Abstract:
An RGB and/or CMYK full color optical display device comprising multiple nanostructure arrays configured to provide display of a wide range of colors corresponding to multiple pixels or sub-regions of an image is disclosed, where the multiple nanostructure arrays may be formed on a single substrate layer. An optical display device includes a substrate having a surface, and a first pixel of a color image comprising first and second sub-pixels according to at least one of an additive and subtractive color scheme, where the first sub-pixel comprises a first optical sub-wavelength nanostructure array formed on or in the surface of the substrate, and where the second sub-pixel comprises a second optical sub-wavelength nanostructure array formed on or in the surface of the substrate. A method of manufacturing an RGB and/or CMYK full color optical display comprising multiple nanostructure arrays arranged as sub-pixels according to a color scheme is also disclosed.
Abstract:
A motion and animation display is disclosed, including multiple nanostructure arrays oriented at differing relative angles of rotation corresponding to multiple frames of an animation image, wherein the multiple nanostructure arrays are formed on a single substrate layer. An optical display device is also disclosed, including a substrate having a surface, a first frame of an animated image comprising a first optical sub-wavelength nanostructure array formed on or in the surface of the substrate, and a second frame of an animated image comprising a second optical sub-wavelength nanostructure array formed on or in the surface of the substrate, where the second nanostructure array is rotated relative to the first nanostructure array by a first relative angle of rotation. A method of manufacturing a motion and animation display comprising multiple nanostructure arrays oriented at differing relative angles of rotation is also disclosed.
Abstract:
A motion and animation display is disclosed, including multiple nanostructure arrays oriented at differing relative angles of rotation corresponding to multiple frames of an animation image, wherein the multiple nanostructure arrays are formed on a single substrate layer. An optical display device is also disclosed, including a substrate having a surface, a first frame of an animated image comprising a first optical sub-wavelength nanostructure array formed on or in the surface of the substrate, and a second frame of an animated image comprising a second optical sub-wavelength nanostructure array formed on or in the surface of the substrate, where the second nanostructure array is rotated relative to the first nanostructure array by a first relative angle of rotation. A method of manufacturing a motion and animation display comprising multiple nanostructure arrays oriented at differing relative angles of rotation is also disclosed.
Abstract:
An RGB and/or CMYK full color optical display device comprising multiple nanostructure arrays configured to provide display of a wide range of colors corresponding to multiple pixels or sub-regions of an image is disclosed, where the multiple nanostructure arrays may be formed on a single substrate layer. An optical display device includes a substrate having a surface, and a first pixel of a color image comprising first and second sub-pixels according to at least one of an additive and subtractive color scheme, where the first sub-pixel comprises a first optical sub-wavelength nanostructure array formed on or in the surface of the substrate, and where the second sub-pixel comprises a second optical sub-wavelength nanostructure array formed on or in the surface of the substrate. A method of manufacturing an RGB and/or CMYK full color optical display comprising multiple nanostructure arrays arranged as sub-pixels according to a color scheme is also disclosed.