Abstract:
A receiver in a human communication system includes: receiving electrodes including a transmission frame including control frames and data frames; first and second switches connected with the receiving electrodes; a switching control unit controlling a switching of the first and second switches to selectively connect the receiving electrodes with the first and second switches in response to each control frame according to a predetermined rule every time each of the control frames is input; a signal processing unit performing signal processing on the transmission frame output from the first and second switches; a preamble detection unit detecting the first preamble from each of the control frames included in the signal-processed transmission frame to generate preamble correlation values for the first preamble; and a correlation value processing unit controlling the switching control unit to select pairs of final receiving electrodes among the receiving electrodes based on the preamble correlation values.
Abstract:
Provided are a frequency modulation/demodulation apparatus using a frequency selective baseband and a transmitting/receiving apparatus using the same. In a frequency selective baseband transmission technique or an FS-CDMA technique, a transmission rate is controlled according to communication channel environment, spread code groups are repeatedly selected in a receiving side so as to obtain a frequency diversity gain. Accordingly, it is possible to reduce interference between users. In addition, even in a case where strong interference induced from electronic exists, it is possible to implement low-power, stable human-body communication and to ensure a communication quality.
Abstract:
There is provided a chair and multimedia player comprising a sound transmission apparatus performing human-body communications. The chair and multimedia player comprise at least one sound transmission apparatus, wherein the sound transmission apparatus is disposed in a surface of the chair and multimedia player to allow a user to hear a sound signal when the user is in contact with or adjacent to the surface, and the sound transmission apparatus generates a composite signal including a sound signal and a demodulation signal restoring only the sound signal from the composite signal and outputs the generated composite signal and demodulation signal into a human body in order to restore the sound signal within the vicinity of the ears of the user.
Abstract:
A walking guidance apparatus using human body communication, including: a first human body communication device acquiring a walking guidance information signal, converting the acquired walking guidance information signal into a signal available for human body communication, and transmitting the converted signal through a user's body; and a second human body communication device receiving the signal transmitted through the user's body from the first human body communication device, converting the received signal into a signal that can be recognized by the user, and outputting the converted signal. Walking guidance information having a high privacy function and high stability and accuracy can be provided to enhance user convenience.
Abstract:
An electronic apparatus having a control function using human body communication includes: a first control unit reading control data and performing a control to provide the read control data; a first human body communication unit converting the control data into a signal, which is transmittable through human body communication, according to a control signal outputted from the first control unit; an electrode installed in an outer housing of the electronic apparatus and transmitting the signal provided from the first human body communication unit to a user's body which comes into contact with the electronic apparatus; and a first storage unit storing the control data.
Abstract:
Provided are a method and apparatus using a frequency selective baseband. Symbol-error correction modulation and demodulation is performed by generating a plurality of subgroups by dividing 2N spread codes or orthogonal codes used for frequency spreading into 2M (M
Abstract:
There are provided a receiver in human body communication system using multiple receivers reducing an error rate of receiver signals by applying a space diversity acquisition-related SIMO technology to a plurality of received data using multiple receivers or receiver electrodes in a human body communication system using a human body as a medium, and of stably transmitting the data for the interference of signals generated by other users or from different electronic devices, and a method for receiving data in the human body communication system. The receiver and the method for receiving data in a human body communication system may be useful to stably transmit/receive data without any reduction of its transmission rate by reducing the distortion in channels and the signal noise which are caused in the use of one receiver.
Abstract:
A technique for simultaneously acquiring vehicle identification information and speed information of an RFID tag-attached vehicle by calculating the vehicle speed by using a Doppler shift value extracted from transmission and reception signals between the RFID tag and the RFID reader is disclosed. A method for measuring a vehicle speed by using an RFID reader installed right up on the road or at the roadside includes: transmitting a continuous wave; receiving a reflected wave with respect to the continuous wave from an RFID tag attached to a vehicle which has received the continuous wave; extracting a Doppler shift value from the continuous wave and the reflected wave; and calculating the speed of the vehicle by using the Doppler shift value.
Abstract:
A touch input device includes: a transparent electrode includes: a plurality of unit electrodes; a switch configured to reconfigure an electrical connection state of the transparent electrode; and a controller configured to control the switch that reconfigures the electrical connection state of the transparent electrode.
Abstract:
Provided are a stack-type beta battery generating a current from a beta source and a method of manufacturing the same. The method includes forming an oxide mask in a predetermined pattern on a surface of a substrate, forming a plurality of recesses by etching a region without the oxide mask from the substrate, removing the oxide mask and forming a PN-junction layer on the substrate, forming a first electrode on the PN-junction layer and forming a second electrode on another surface of the substrate, and forming a unit module by stacking a radioisotope layer on the PN-junction layer, the radioisotope layer emitting a beta ray. The beta battery can improve efficiency per unit area than a single layered beta battery by the number of stacked PN-junctions, and the process is simpler than a pore-forming process using DRIE, and manufacturing costs and time can be saved.