Abstract:
In one aspect of the disclosure an internal combustion engine may be provided that may include a combustion chamber and a piston reciprocally moveable in the combustion chamber. The combustion chamber may have an intake port and a dual function port. The dual function port may be connected to an exhaust system and to an intake system. A method may be provided including opening a fluid connection between the intake system and the combustion chamber via the intake port as well as the dual function port during at least a part of an intake stroke of the piston. Instead of, or in addition, the method may include opening a fluid connection between the exhaust system and the combustion chamber via the dual function port during at least a part of the intake stroke of the piston.
Abstract:
In one aspect a mixing tube is provided for the introduction of a flow of exhaust gas into a flow of intake air of an internal combustion engine. The mixing tube comprises an opening, tube section, and a plurality of tube ports. The opening is configured to receive the flow of exhaust gas. The tube section is fluidly connected to the opening and extends into the flow of intake air. The tube ports on the tube section are located in low static pressure regions that are determined as intake air passes around the tube section.
Abstract:
A method of constructing a speed target on a camshaft in a combustion engine is disclosed. In applying the method a multiple number of ring segments are positioned around a portion of the camshaft. The multiple number of ring segments form a closed ring having a variable outer magnetic surface for reading by a speed sensor. Further, the multiple number of ring segments are secured in a radial direction and in a circumferential direction with respect to the camshaft.
Abstract:
Disclosed is a push rod retainer for retaining an extremity of a push rod and a first end of a rocker arm in proximity of each other, comprising a base section accommodating at least a part of a junction space wherein the extremity of the push rod and a connection member of the rocker arm are joinable; and at least two resilient projections extending from the base section and at least partly in a direction towards each other, said resilient projections bounding a first entrance to the junction space. Also disclosed is a rocker arm having a connection member that is provided with a circumferential constriction configured for engagement by the resilient projections of the disclosed push rod retainer, and a method of retaining together a push rod and a rocker arm.
Abstract:
In one aspect of the disclosure an internal combustion engine may be provided that may include a combustion chamber and a piston reciprocally moveable in the combustion chamber. The combustion chamber may have an intake port and a dual function port. The dual function port may be connected to an exhaust system and to an intake system. A method may be provided including opening a fluid connection between the intake system and the combustion chamber via the intake port as well as the dual function port during at least a part of an intake stroke of the piston. Instead of, or in addition, the method may include opening a fluid connection between the exhaust system and the combustion chamber via the dual function port during at least a part of the intake stroke of the piston.
Abstract:
In one aspect a mixing tube is provided for the introduction of a flow of exhaust gas into a flow of intake air of an internal combustion engine. The mixing tube comprises an opening, tube section, and a plurality of tube ports. The opening is configured to receive the flow of exhaust gas. The tube section is fluidly connected to the opening and extends into the flow of intake air. The tube ports on the tube section are located in low static pressure regions that are determined as intake air passes around the tube section.