摘要:
An energy harvesting circuit harvests energy from a voltage source and charges a storage element with the harvested energy. The energy harvesting circuit includes an energy source, a storage capacitor to store energy output from the energy source, a power converter circuit, an energy storage element, and an enabling circuit. The enabling circuit turns the boost converter circuit on and off according to a monitored capacitance voltage of the storage capacitor. When the boost converter circuit is turned off, the storage capacitor accumulates energy output from the energy source until a reference voltage is reached, whereupon the boost converter circuit is turned on, enabling current flow from the storage capacitor to the storage element. When the storage capacitor discharges to a minimum voltage level, the boost converter circuit is turned off. The enabling circuit and a reference voltage supply are powered by the energy source.
摘要:
An energy harvesting circuit harvests energy from a voltage source and charges a storage element with the harvested energy. The energy harvesting circuit includes an energy source, a storage capacitor to store energy output from the energy source, a power converter circuit, an energy storage element, and an enabling circuit. The enabling circuit turns the boost converter circuit on and off according to a monitored capacitance voltage of the storage capacitor. When the boost converter circuit is turned off, the storage capacitor accumulates energy output from the energy source until a reference voltage is reached, whereupon the boost converter circuit is turned on, enabling current flow from the storage capacitor to the storage element. When the storage capacitor discharges to a minimum voltage level, the boost converter circuit is turned off. The enabling circuit and a reference voltage supply are powered by the energy source.
摘要:
Temperature measurement with interleaved bi-level current on a diode and bi-level current source therefor which provides a very accurate ratio of measurement currents through the diode without calibration and despite process and temperature variations. The bi-level current source uses a plurality N of individual current sources wherein the higher current is comprised of the sum of the N individual current sources and the lower current is comprised of one of the individual current sources, with a temperature measurement being made using N higher current/lower current measuring sequences and using a different one of the N individual current sources for each sequence. Proper selection of the value of N and proper ordering of the two currents in each of the N measuring sequences when the diode temperature is increasing or decreasing will provide an output temperature representing the temperature of the diode at the beginning of the N measurement sequences, at the end of the N measurement sequences, or half way between. Alternate methods of achieving the results of the invention are disclosed.
摘要:
Electronic devices with a VCOM display panel are configured to provide a common voltage VCOM to a VCOM display panel backplane, referred to as a VCOM reference plane. The common voltage is supplied by a VCOM application circuit coupled to the VCOM reference plane. The VCOM application circuit includes a linear amplifier, such as a Class AB amplifier, coupled to a switched transient assist circuit configured to output the common voltage. The switched transient assist circuit stabilizes the amplifier in the presence of large transient output currents but with minimized power dissipation and heat rise in the amplifier.
摘要:
Various embodiments of the present invention relate to a LED illumination system, and more particularly, to systems, devices and methods of employing a LED driver control loop to adjust the brightness of the LED light smoothly and suppress flickering/blinking. The LED driver control loop comprises a LED driver, a charge integrator, a VPWR modulator, and a driver controller. The charge integrator generates a voltage VC that is associated with a LED current iLED and illumination energy for the LED light. The VPWR modulator provides a clamping voltage VPWR such that the LED driver ceases to inject the LED current iLED as the voltage VC saturates at VPWR during each powering cycle. The clamping voltage VPWR is dynamically adjusted at the end of each powering cycle to gradually adjust the brightness and avoid flickering or blinking while still ensuring illumination efficiency.
摘要:
Electronic devices with a VCOM display panel are configured to provide a common voltage VCOM to a VCOM display panel backplane, referred to as a VCOM reference plane. The common voltage is supplied by a VCOM application circuit coupled to the VCOM reference plane. The VCOM application circuit includes a linear amplifier, such as a Class AB amplifier, coupled to a switched transient assist circuit configured to output the common voltage. The switched transient assist circuit stabilizes the amplifier in the presence of large transient output currents but with minimized power dissipation and heat rise in the amplifier.