Abstract:
An acoustic array including a plurality of acoustic sensors positioned at predetermined telemetry points for measuring the acoustic energy from the surrounding environment. The acoustic sensors are each positioned within a fluid-filled pocket in the acoustic array, wherein each the various fluid-filled pockets are separated from each other by a section of solid fill buoyant material. The sections of solid fill material control the buoyancy of the acoustic array. The acoustic array is surrounded by a longitudinally extending outer hosewall which encloses the acoustic array and forms the fluid-filled pockets between the sections of solid fill material. A strength member is extended longitudinally throughout the length of the acoustic array to provide a load bearing mechanism for distributing longitudinal tensile loads applied to the acoustic array, while support spacers are situated within the acoustic array to provide radial support for the acoustic array. The acoustic array is formed of a lightweight and electrically passive structure which allows water to be used as the fill fluid for the pockets. Using water as the fill fluid provides an environmentally-safe fill fluid having buoyancy characteristics which are not significantly altered by its mixture with water from the surrounding environment should a rupture in the hosewall occur.
Abstract:
An optical sensor in which acceleration, acoustic velocity, or displacement (vibration) causes a corresponding shift in the center wavelength of the sensor output. The sensor can be coupled to a high-speed interferometric interrogator through an unbalanced fiber interferometer. The unbalanced interferometer functions to translate optical wavelength shift into phase shift, which is easily demodulated by the interrogator. A method of measuring acceleration uses the sensor.
Abstract:
An integrated module coupler for a towed hydrophone streamer and a method of transmitting towing forces and electrical signals therethrough. The coupler comprises: (1) a coupler body having a plurality of axial bores and a plurality of tension member apertures therethrough, (2) a plurality of electrically-conductive pins disposed through the bores, (3) an insulating material, disposed between the plurality of pins and walls of the plurality of bores, for insulating the pins from the coupler body to thereby allow electrical signals to pass via the plurality of pins through the body, (4) means for retaining tension members within each of the tension member apertures, the retaining means allowing the tension members to terminate within the tension member apertures in an eye, the retaining means passing through each of the eyes to thereby engage the tension member and (5) a coupler shell, coaxial with and capturing the coupler body to engage a mating coupler shell of another coupler, towing forces transmittable between the coupler shell and the tension members via the coupler body and the retaining means.
Abstract:
A connector having a metal shell which would normally be subject to galvanic action in an underwater environment. The metal shell includes a protective plastic coating of polyphenylene sulfide resin electrodeposited thereon and over a portion of which plastic coating an encapsulating boot is bonded. The arrangement insures that no delamination of the encapsulant will occur due to galvanic reactions.
Abstract:
A method of measuring acceleration using an optical sensor. In the optical sensor, acceleration, acoustic velocity, or displacement (vibration) causes a corresponding shift in the center wavelength of the sensor output. The sensor can be coupled to a high-speed interferometric interrogator through an unbalanced fiber interferometer. The unbalanced interferometer functions to translate optical wavelength shift into phase shift, which is easily demodulated by the interrogator.
Abstract:
A sensor apparatus combines an optical sensor in which acceleration, acoustic velocity, or displacement (vibration) causes a corresponding shift in the center wavelength of the sensor output, coupled to a high speed interferometric interrogator, through an unbalanced fiber interferometer. The unbalanced interferometer functions to translate optical wavelength shift into phase shift, which is easily demodulated by the interrogator.
Abstract:
A sensor apparatus combines an optical sensor in which acceleration, acoustic velocity, or displacement (vibration) causes a corresponding shift in the center wavelength of the sensor output, coupled to a high speed interferometric interrogator, through an unbalanced fiber interferometer. The unbalanced interferometer functions to translate optical wavelength shift into phase shift, which is easily demodulated by the interrogator.
Abstract:
An autonomous ice penetrator/payload delivery system is provided which, when once launched from its parent vehicle will, upon reaching the surface of the ice automatically right itself to proper orientation with respect to the ice surface for penetration. A modified solid propellant rocket engine is used as the heat source to penetrate the ice rapidly and automatically is ignited upon the ice pentrator/payload containment vessel attaining proper orientation with its longitudinal axis substantially normal to the ice surface. The hot gasses of combustion produced by the modified rocket engine impinge upon the ice thereby melting it. As the ice is melted and penetrated, the penetrator/payload containment vessel will follow the receding ice surface either by gravity, or by motive forces provided by the modified rocket engine, or both. In situations where the ice penetrator is launched below the surface of the ice, buoyancy built into the penetrator system containment vessel will cause it to penetrate the ice either due to its buoyancy alone or in conjunction with a motive force developed by the modified rocket engine. The penetrator system container in conjunction with the bore hole formed by the melting ice also functions as a guide to maintain verticality of the penetrator during the initial stages of penetration of the ice surface. The walls of the subsequent bore hole formed in the ice and the generally long, cylindrical shape of the penetrator/payload containment vessel body naturally coact to maintain the vertical penetration angle.
Abstract:
An optical sensor in which acceleration, acoustic velocity, or displacement (vibration) causes a corresponding shift in the center wavelength of the sensor output. The sensor can be coupled to a high-speed interferometric interrogator through an unbalanced fiber interferometer. The unbalanced interferometer functions to translate optical wavelength shift into phase shift, which is easily demodulated by the interrogator. A method of measuring acceleration uses the sensor.
Abstract:
A uniquely designed acoustic transducer comprising a stack of piezoceramic elements (other piezoelectric materials may be used) mounted upon a tuned, shaped transmit/receive head made of hardened metal alloy. The ceramic stack is preloaded to the head via a stress bolt. Insulator electrodes used in the ceramic stack are selected to minimize compliance in the stack for maximum efficiency. All the material properties, sizes, weights, etc., as well as the overall transducer design are carefully selected to act in combination to match the impedance of the load (i.e. metal structural framework). The diameter of the tip of the tuned, shaped driving head is sized such that when clamped to a metal framework, the base metal of the material just under the tip is compressed to or slightly beyond its yield point. This eliminates the requirement for surface preparation because any coatings will be displaced under the applied pressure and any surface irregularities will be flattened out. The underside of the clamping member used to hold the transducer assembly in place consists of a half wave length reflecting waveguide designed to reflect any absorbed energy back into the load. Thus, the attachment points for both the reflector and the transducer head of the clamping device effectively appear invisible to the driving transducer under load.