Abstract:
Method for adaptive weighting of geophysical data types in iterative joint inversion to speed convergence and aid escape from local minima of the penalty (objective) function. Two or more geophysical data sets (11) representing a region of interest are obtained, and are jointly inverted to infer models of the physical properties that affect the particular types of data used. The misfit for each data type is a weighted tem in the penalty function (13). The invention involves changing the weights (51) as the iteration cycles progress when the iteration convergence criteria are satisfied (15), to see if they remain satisfied (52) with the modified penalty function.
Abstract:
Method for joint inversion of geophysical data to obtain 3-D models of geological parameters for subsurface regions of unknown lithology. Two or more data sets of independent geophysical data types are obtained, e.g. seismic and electromagnetic. Then they are jointly inverted, using structural coupling, to infer geophysical parameter volumes, e.g. acoustic velocity and resistivity. Regions of common lithology are next identified based on similar combinations of geophysical parameters. Then a joint inversion of the multiple data types is performed in which rock physics relations vary spatially in accordance with the now-known lithology, and 3-D models of geological properties such as shale content and fracture density are inferred. The computational grid for the last inversion may be defined by the lithology regions, resulting in average geological properties over such regions, which may then be perturbed to determine uncertainty in lithologic boundaries.
Abstract:
A method including: obtaining geophysical data for a subsurface region; generating, with a computer, at least two subsurface property models of the subsurface region for at least two subsurface properties by performing an inversion that minimizes a misfit between the geophysical data and forward simulated data subject to one or more constraints, the inversion including generating updates to the at least two subsurface property models for at least two different scenarios that both fit the geophysical data with a same likelihood but have different values for model materiality, with the model materiality being posed as an equality constraint in the inversion, wherein the model materiality is a functional of model parameters that characterize hydrocarbon potential of the subsurface region; analyzing a geophysical data misfit curve or geophysical data misfit likelihood curve, over a predetermined range of values of the model materiality to identify the at least two subsurface property models that correspond to a high-side and low-side, respectively, for each of the at least two subsurface properties, with the high-side and low-side quantifying uncertainties in the subsurface properties; and prospecting for hydrocarbons in the subsurface region with the at least two models that correspond to the high-side and the low-side for each of the at least two subsurface properties.
Abstract:
A method and apparatus for generating a fluid saturation model for a subsurface region. One example method generally includes obtaining a model of the subsurface region; for each of a plurality of fluid types: flooding the subsurface region model with the fluid type to generate a flood model; and running a trial petrophysical inversion with the flood model to generate a trial petrophysical model; identifying potential fluid contact regions in the trial petrophysical models; partitioning the subsurface region model at the identified potential fluid contact regions; and constructing the fluid saturation model from the partitioned subsurface region model.
Abstract:
A method including: obtaining geophysical data for a subsurface region; generating, with a computer, at least two subsurface property models of the subsurface region for at least two subsurface properties by performing an inversion that minimizes a misfit between the geophysical data and forward simulated data subject to one or more constraints, the inversion including generating updates to the at least two subsurface property models for at least two different scenarios that both fit the geophysical data with a same likelihood but have different values for model materiality, with the model materiality being posed as an equality constraint in the inversion, wherein the model materiality is a functional of model parameters that characterize hydrocarbon potential of the subsurface region; analyzing a geophysical data misfit curve or geophysical data misfit likelihood curve, over a predetermined range of values of the model materiality to identify the at least two subsurface property models that correspond to a high-side and low-side, respectively, for each of the at least two subsurface properties, with the high-side and low-side quantifying uncertainties in the subsurface properties; and prospecting for hydrocarbons in the subsurface region with the at least two models that correspond to the high-side and the low-side for each of the at least two subsurface properties.
Abstract:
Method for estimating geological properties in a subsurface region using multiple types of geophysical data (21). An initial physical properties model 22 is constructed. Some parameters in the model are frozen (23) and optionally portions of the model wave number and spatial domains (24) and the data frequency and data time domains (25), are also frozen. Then, a joint inversion (26) of the multiple data types is performed to calculate an update to the model only for the portions that are not frozen. The converged model (27) for this inversion is used as a new starting model, and the process is repeated (28), possibly several times, unfreezing more parameters and data each time until the desired spatial and parameter resolution (29) has been achieved.
Abstract:
A method and apparatus for hydrocarbon management, including generating a fluid saturation model for a subsurface region. Generating such a model may include: performing a brine flood petrophysical inversion to generate inversion results; iteratively repeating: classifying rock types (including at least one artificial rock type) based on the inversion results; generating a trial fluid saturation model based on the classified rock types; performing a trial petrophysical inversion with the trial fluid saturation model to generate trial results; and updating the inversion results with the trial results; and generating the fluid saturation model for the subsurface region based on the inversion results. The petrophysical inversion may include a facies-based inversion and/or may invert for water saturation. Generating such a model may include: performing a brine flood petrophysical inversion, performing a hydrocarbon flood petrophysical inversion; identifying misfits in the inversion results, and generating a trial fluid saturation model based on the misfits.
Abstract:
Method for joint inversion of geophysical data to obtain 3-D models of geological parameters for subsurface regions of unknown lithology. Two or more data sets of independent geophysical data types are obtained, e.g. seismic and electromagnetic. Then they are jointly inverted, using structural coupling, to infer geophysical parameter volumes, e.g. acoustic velocity and resistivity. Regions of common lithology are next identified based on similar combinations of geophysical parameters. Then a joint inversion of the multiple data types is performed in which rock physics relations vary spatially in accordance with the now-known lithology, and 3-D models of geological properties such as shale content and fracture density are inferred. The computational grid for the last inversion may be defined by the lithology regions, resulting in average geological properties over such regions, which may then be perturbed to determine uncertainty in lithologic boundaries.
Abstract:
Method for estimating geological properties in a subsurface region using multiple types of geophysical data (21). An initial physical properties model 22 is constructed. Some parameters in the model are frozen (23) and optionally portions of the model wave number and spatial domains (24) and the data frequency and data time domains (25), are also frozen. Then, a joint inversion (26) of the multiple data types is performed to calculate an update to the model only for the portions that are not frozen. The converged model (27) for this inversion is used as a new starting model, and the process is repeated (28), possibly several times, unfreezing more parameters and data each time until the desired spatial and parameter resolution (29) has been achieved.