Supported catalysts having platinum particles
    1.
    发明授权
    Supported catalysts having platinum particles 失效
    具有铂颗粒的载体催化剂

    公开(公告)号:US07521392B1

    公开(公告)日:2009-04-21

    申请号:US11061033

    申请日:2005-02-18

    摘要: The catalytic efficiency of supported catalysts containing metal nanoparticles is strongly related to the chemical softness at the surfaces of such nanoparticles. Supported catalysts containing platinum nanoparticles having average surface softness values (expressed in scaled units ranging from 0 to 1) between 0.07198 and 0.09247 exhibit high catalytic efficiency. The catalytic efficiency of such platinum nanoparticles for CO oxidation, expressed as the turn-over frequency (TOF), was observed to be on or above 0.03062 s−1. The supported catalysts containing platinum nanoparticles with tighter average surface softness ranges exhibit even higher catalytic efficiencies. The TOF for CO oxidation of platinum nanoparticles having average surface softness values between 0.08031 and 0.08679 was observed to be on or above 0.06554 s−1.

    摘要翻译: 含有金属纳米粒子的载体催化剂的催化效率与这些纳米颗粒表面的化学柔软性有很强的相关性。 含有0.07198和0.09247之间平均表面柔软度(以0到1表示的平均表面积)的铂纳米颗粒的负载催化剂表现出高催化效率。 表示为转换频率(TOF)的这种用于CO氧化的铂纳米颗粒的催化效率被观察到在或大于0.03062s -1。 含铂纳米粒子的负载型催化剂具有更高的平均表面柔软度,显示出更高的催化效率。 观察到平均表面柔软度值在0.08031和0.08679之间的铂纳米颗粒的CO氧化TOF在0.06554s -1以上。

    Method of estimating chemical reactivity of nanoparticles
    2.
    发明授权
    Method of estimating chemical reactivity of nanoparticles 失效
    估算纳米粒子化学反应性的方法

    公开(公告)号:US07482163B1

    公开(公告)日:2009-01-27

    申请号:US11060850

    申请日:2005-02-18

    IPC分类号: G06F17/50 B01J20/00

    摘要: The catalytic efficiency of supported catalysts containing metal nanoparticles is strongly related to the chemical softness at the surfaces of such nanoparticles. The chemical softness of a nanoparticle is obtained using results from Density Functional Theory modeling, an extended version of Embedded Atom Method modeling, and continuum modeling based on size and shape of the nanoparticle. A metal nanoparticle of a certain size and shape is first modeled using the extended EAM and EAM parameters that have been validated with results from DFT modeling, to obtain atomic energy densities at each atom location. The chemical softness value at each atom location is then calculated from the atomic energy densities and various parameters that are derived based on results from DFT modeling. The surface chemical softness value is derived from the local chemical softness values based on the geometry and atomistic structure of the metal nanoparticle.

    摘要翻译: 含有金属纳米粒子的载体催化剂的催化效率与这些纳米颗粒表面的化学柔软性有很强的相关性。 使用密度泛函理论建模,嵌入式原子法建模的扩展版本和基于纳米粒子尺寸和形状的连续模型的结果,获得了纳米粒子的化学柔软度。 首先使用已经通过DFT建模的结果验证的扩展EAM和EAM参数来建模具有一定尺寸和形状的金属纳米颗粒,以获得每个原子位置处的原子能量密度。 然后从原子能量密度和根据DFT建模的结果导出的各种参数计算每个原子位置处的化学柔软度值。 表面化学柔软度值是从金属纳米粒子的几何形状和原子结构的局部化学柔软度值得出的。