摘要:
A separate type coil for a magnetic resonance imaging system has a first partial coil in a first partial casing and a second partial coil in a second partial casing, the first and second partial coils being connected to a connector for connection to the imaging system via a first cable and a second cable, respectively. The coil also has a coupler having a first part and a second part that are coupled to each other. The first part of the coupler is disposed in the first partial casing and is connected to the first partial coil, the second part of the coupler is disposed in the second partial casing The first cable is disposed in the second partial casing, and the second part of the coupler is connected to the connector for connection to the imaging system via the first cable. This separate type coil couples and connects the signals in the first partial coil to the cable and the connector via the coupler, so as to ensure the reliability of the electrical connections.
摘要:
A separated coil for a magnetic resonance imaging system has a first partial coil in a first partial casing and a second partial coil in a second partial casing, the first and second partial coils being connected to a connector for connection to the imaging system via a first cable and a second cable, respectively. The coil also has a coupler having a first part disposed in the first partial casing and connected to the first partial coil, and a second part, coupled to the first part, disposed in the second partial casing. The first cable is disposed in the second partial casing, and the second part of the coupler is connected to the connector for connection to the imaging system via the first cable. The signals in the first partial coil are coupled and connected to the cable and the connector via the coupler.
摘要:
A receiver coil array for a magnetic resonance imaging system has an inductive coupling coil incorporated in the middle coil unit of the receiver coil array as its secondary coil, which serves to regulate the frequency and impedance of the middle coil unit. The secondary coil has an output regulation circuit which can output the magnetic resonance signals received by the middle coil unit to increase the number of the coil units in the receiver coil array that receive and output resonance signals while further regulating the frequency and impedance of the middle coil unit. Since this receiver coil array achieves regulation of the frequency and impedance of the middle coil unit and increases the number of the coil units in the receiver coil array that receive and output the resonance signals, it can improve the quality of the signals received by the receiver coil array. Moreover, the design is simple and is easy to achieve.
摘要:
A receiver coil array for a magnetic resonance imaging system has an inductive coupling coil incorporated in the middle coil unit of the receiver coil array as its secondary coil, which serves to regulate the frequency and impedance of the middle coil unit. The secondary coil has an output regulation circuit which can output the magnetic resonance signals received by the middle coil unit to increase the number of the coil units in the receiver coil array that receive and output resonance signals while further regulating the frequency and impedance of the middle coil unit. Since this receiver coil array achieves regulation of the frequency and impedance of the middle coil unit and increases the number of the coil units in the receiver coil array that receive and output the resonance signals, it can improve the quality of the signals received by the receiver coil array. Moreover, the design is simple and is easy to achieve.
摘要:
The present invention discloses a magnetic resonance imaging apparatus for scanning a spine, comprising a body coil for emitting signals, a patient table within the body coil and a spine coil for receiving signals, wherein said spine coil is fixed within said body coil and disposed under said patient table. Said patient table is movable within said body coil by slide rails fitted at the two sides thereof, so as to reduce the length of said spine coil. The cross section of said patient table is in an arched shape, and the cross section of said spine coil is in an arched shape which matches that of said patient table. By using the apparatus of the present invention, since the spine coil is disposed underneath the board of the patient table, the design and production of the board of the patient table are simplified, the number of radio frequency choke coils and radio frequency element units is reduced and so are the costs; also, the space for the patient is increased, so the patient's comfort is improved; and furthermore, the repeated plugging and unplugging of the spine coil, as in the prior art, are avoided so as to reduce the probability of damaging the coil.
摘要:
The present invention discloses a magnetic resonance imaging apparatus for scanning a spine, comprising a body coil for emitting signals, a patient table within the body coil and a spine coil for receiving signals, wherein said spine coil is fixed within said body coil and disposed under said patient table. Said patient table is movable within said body coil by slide rails fitted at the two sides thereof, so as to reduce the length of said spine coil. The cross section of said patient table is in an arched shape, and the cross section of said spine coil is in an arched shape which matches that of said patient table. By using the apparatus of the present invention, since the spine coil is disposed underneath the board of the patient table, the design and production of the board of the patient table are simplified, the number of radio frequency choke coils and radio frequency element units is reduced and so are the costs; also, the space for the patient is increased, so the patient's comfort is improved; and furthermore, the repeated plugging and unplugging of the spine coil, as in the prior art, are avoided so as to reduce the probability of damaging the coil.
摘要:
In a transmission method and receiver for magnetic resonance signals, the receiver has an in vivo coil and an ex vivo coil that are independent of each other. The in vivo coil is disposed within the rectum of a human body for acquiring the magnetic resonance signals generated by the excitation of a radio-frequency transmitter, and transferring the acquired magnetic resonance signals to the ex vivo coil by electromagnetic coupling. The ex vivo coil is to be disposed outside the human body for receiving the magnetic resonance signals from the in vivo coil by the electromagnetic coupling. It is thus not necessary to make a mechanical connection from the in vivo coil to the outside, so it is very convenient for use.