Abstract:
The present invention provides a method for controlling a critical dimension of shallow trench isolations in a STI etch process, comprises the following steps: before the STI etch process, pre-establishing a mapping relation between a post-etch and pre-etch critical dimension difference of a BARC layer and a thickness of the BARC layer; and during the STI etch process after coating the BARC layer, measuring the thickness of the BARC layer and determining a trimming time for a hard mask layer according to a critical dimension difference corresponding to the measured thickness in the mapping relation and a critical dimension of a photoresist pattern, then performing a trimming process for the hard mask layer lasting the trimming time to make a critical dimension of the hard mask layer equal to a required critical dimension of an active area, and etching a substrate to form shallow trenches with a predetermined critical dimension.
Abstract:
The present invention provides a method for controlling a critical dimension of shallow trench isolations in a STI etch process, comprises the following steps: before the STI etch process, pre-establishing a mapping relation between a post-etch and pre-etch critical dimension difference of a BARC layer and a thickness of the BARC layer; and during the STI etch process after coating the BARC layer, measuring the thickness of the BARC layer and determining a trimming time for a hard mask layer according to a critical dimension difference corresponding to the measured thickness in the mapping relation and a critical dimension of a photoresist pattern, then performing a trimming process for the hard mask layer lasting the trimming time to make a critical dimension of the hard mask layer equal to a required critical dimension of an active area, and etching a substrate to form shallow trenches with a predetermined critical dimension.
Abstract:
An unequal helix-angle end mill includes a cutting part and a handle part. The cutting part is provided with a plurality of flutes, each spirally extending from the bottom end to the handle part. The face of each flute facing the cutting rotation direction is a rake face, wherein the rake face and an outer peripheral face of the cutting part are intersected to form an outer peripheral blade, and the helix-angle of at least one of the peripheral blades is different from those of the other peripheral blades. A face joined with the peripheral blade among the outer peripheral face of the cutting part is a rear face. The width B of the edge flap of each peripheral blade is equal on a plane orthogonal to a rotating axis of the end mill. The unequal helix-angle end mill has high strength, and enhances the cutting depth and durability.
Abstract:
The present disclosure provides methods for analyzing structure and/or composition of glycoproteins and glycans of glycoproteins. Such methods can include subjecting a glycoprotein preparation to a condition that removes at least one O-linked glycan from the glycoprotein. Such methods can include subjecting a glycoprotein preparation to a condition that releases an N-glycan from the glycoprotein, e.g., prior to subjecting the glycoprotein to a condition that releases an O-glycan from the glycoprotein.
Abstract:
The present invention discloses a data transmission method and apparatus. The method comprises: segmenting data to be transmitted into information file segments with a length of Tb bits; performing forward error correction (FEC) coding for Tb information bit sequences composed of bits in same positions in a plurality of continuous information file segments to generate Tb check bit sequences, putting each bit of the check bit sequences in the same position in the check file segments as the corresponding information bit sequences; and transmitting each of the information file segments and check file segments according to their order; the number of bits contained in the information bit sequences being less than or equal to the maximum length of Kmax bits of the FEC-coded information bit sequences.
Abstract:
A three-dimensional imaging apparatus 101 for generating an image of a three-dimensional object 111 is disclosed. The 3D-imaging apparatus 101 has two sets 103a, 103b of reflective elements 105, an image-capturing device 107 and a processor. The image-capturing device 107 is for capturing two images using rays emitted from the object 111 and reflected from each of the two sets 103a, 103b of reflective elements 105. The processor is arranged to identify a plurality of sets of matching points in the respective captured images, each set of the matching points having been generated by the respective rays emitted by a single corresponding element of the object 111. For each set of the matching points identified in the respective captured images, the processor is arranged to determine a location of the corresponding element of the object 111. Thus, a three-dimensional image of the object 111 can be generated by the processor using the determined locations of a plurality of elements of the object 111. A method of generating a three-dimensional image of an object is also disclosed.
Abstract:
A universal multipurpose sensor fixing device comprises a radial positioning mechanism, supporting mechanisms, bases, acoustic emission test sensor mounting mechanisms, and parallelism adjusting members. Each supporting mechanism includes a main arm and an auxiliary arm having one end connected to the main arm and a ball head on the other end. A parallelism adjusting member mounting mechanism is provided at the joint of the main arm and the auxiliary arm. The main arms are respectively connected to the two free ends of the radial positioning mechanism to position the auxiliary arms at the inner sides of the main arms, arranged axis symmetrically with respect to the central line of the radial positioning mechanism. The ball heads of the two auxiliary arms are located within spherical holes of the bases to form universal revolute pairs. A set of acoustic emission test sensor mounting mechanisms are mounted at each base.
Abstract:
A method of introducing compressive stress in a weld joint having at least one weld toe is provided. The method includes the step of covering the weld toe of the welded joint with a resistance wire. The method also includes the step of heating the weld toe by the resistance wire, where the weld toe is heated to a selected temperature. The method includes the step of maintaining the weld toe at the selected temperature for a selected amount of time. The method includes the step of removing the resistance wire from the weld toe. The method includes the step of quenching the weld toe with a cooling medium. Compressive stress is introduced to the weld toe during quenching.
Abstract:
A universal acoustic emission test sensor fixing device includes a radial positioning mechanism, supporting mechanisms, bases, acoustic emission test sensor mounting mechanisms, and parallelism adjusting members, in which the supporting mechanism includes a main supporting arm and an auxiliary supporting arm, with one end of the auxiliary supporting arm fixedly connected to or hinged with the main supporting arm and the other end being provided with a ball head, and a parallelism adjusting member mounting mechanism is provided at the joint of the main supporting arm and the auxiliary supporting arm, and the base is provided with a spherical hole.
Abstract:
A method of image processing comprising receiving a plurality of interpolated images, interpolated from two adjacent camera positions having different image planes, applying a transformation to each interpolated image to a respective one of a plurality intermediate image planes, wherein each intermediate image plane is oriented intermediate to the image planes of the two adjacent camera positions depending on a viewing angle of that interpolated image relative to the adjacent camera positions. Also an integrated circuit or processor, an apparatus for capturing images and an apparatus for displaying images.