Abstract:
Systems and methods may provide a graphics processor that may identify operating conditions under which certain floating point instructions may utilize power to fewer hardware resources compared to when the instructions are executing under other operating conditions. The operating conditions may be determined by examining operands used in a given instruction, including the relative magnitudes of the operands and whether the operands may be taken as equal to certain defined values. The floating point instructions may include instructions for an addition operation, a multiplication operation, a compare operation, and/or a fused multiply-add operation.
Abstract:
A method and a base station for determining a size of transmission blocks in a subframe. The method comprises: acquiring a physical resource block allocation number N′PRB and a transmission block size index I′TBS; determining a conversion relationship, and converting N′PRB and I′TBS, according to a conversion relationship, respectively into NPRB and ITBS used in existing calculation for the size of a transmission blocks; and according to NPRB and ITBS, calculating the size of the transmission blocks.
Abstract:
Embodiments of the disclosure provides a method for transmitting data of hotspot cell coverage including: step a. a base station adjusts a Modulation and Coding Scheme (MCS) table allowing the same to satisfy a 256 QAM modulation scheme, and acquires layer 1 Transport Block Size (TBS) when the modulation scheme is 256 QAM; step b. on the basis of NPRB, ITBS and the number of Transport Block (TB) mapping layers, the base station determines the TBS currently transmitting data, and transmits data on the basis of the TBS. Embodiments of the disclosure also provides a device and base station for transmitting data. Employment of the method, device, and base station for transmitting the data of hotspot cell coverage of embodiments of the disclosure allows for optimized modulation scheme for the same to support up to 256 QAM, and for improved system throughput, thus solving the problem in hotspot cell coverage of system transmission speed not capable of satisfying actual demand.
Abstract:
A dispersion compensation fiber comprises a fiber core and cladding. The fiber core is a core layer mainly doped with germanium and having a positive relative refractive index difference. The cladding covering the fiber core comprises a trench cladding mainly doped with fluorine, an annular cladding mainly doped with germanium, a matching cladding mainly doped with fluorine, and an outermost mechanical cladding in order. Relative refractive index differences of the fiber core and the claddings are respectively: Δ1% being 1.55% to 2.20%, Δ2% being −0.55% to −0.30%, Δ3% being 0.40% to 0.65%, Δ4% being −0.20% to −0.01%, and Δ5% being 0. Radius ranges, from R1 to R5, of the fiber core and the claddings are respectively: R1 being 1.4 to 1.7 μm, R2 being 4.1 to 4.8 μm, R3 being 6.7 to 8.8 μm, R4 being 10 to 17 μm, and R5 being 38 to 63 μm.
Abstract:
The present invention provides a constellation mapping method, and the method includes: flipping a plurality of bits in each modulation symbol unit to be mapped in part of or all of modulation symbol units to be mapped of a bit sequence to be mapped; and mapping each flipped modulation symbol unit to be mapped as a modulation symbol in a constellation. By means of the present invention, the phenomenon that consecutive bits have the same reliability can be effectively avoided by changing unevenness of reliability distribution of the consecutive bits, and at the same time, the link performance can be improved.
Abstract:
A method for securely communicating a message from a source node to a destination node over a network can comprise the steps of converting the message into an initial bit sequence, pre-processing the initial bit sequence by a modulo adding the initial bit sequence with an auxiliary key message, constructing a reduced network, determining a multitude of paths from the source node to the destination node over the reduced network, constructing an expanded bit sequence comprising the initial bit sequence and the auxiliary key message, splitting the expanded bit sequence into two or more parts, transmitting the two or more parts of the expanded bit sequence over two or more paths of the multitude of paths, re-assembling the two or more parts of the expanded bit sequence at the destination node, and recovering the initial bit sequence by modulo adding the expanded bit sequence with the auxiliary key message.
Abstract:
The present invention provides a method for decoding a low density generator matrix code (LDGC), applied for decoding transmitted original information bits encoded in LDGC code. The method comprises the following steps: A: deleting a part erased by a channel in a received code word sequence R filled by a known bit sequence to obtain an erased code word sequence Re, and deleting the rows corresponding to the erased part from a transposed matrix GIdgct of a generator matrix of the LDGC to obtain the erased generator matrix Ge; B: permuting columns of Ge such that an M-order square matrix with an element in the 0th row and 0th column being a vertex is a triangular matrix to obtain the permuted generator matrix Gf; and C: calculating the original information bits using Gf and Re.
Abstract:
The present invention provides a decoding method and device for Reed-Solomon (RS) codes. The method includes the following steps: A: filling data to be decoded in a byte interleaver by column in turn; B: performing cyclic shift to data in a check region of the byte interleaver by row and/or by column, so as to make the data of each row in the check region become check data in sequence of data of corresponding row in an information region of the byte interleaver; C: performing RS decoding by row method, and writing information data of each row obtained after decoding into the corresponding row in the information region of the byte interleaver in turn; and D: reading business data of the decoded information data from the information region of the byte interleaver by column. The method and device of the present invention achieve the best interleaving effect.
Abstract:
The present invention discloses an encoding method and device for Low Density Generator Matrix Codes (LDGC). Wherein, the method comprises: construct an LDGC mother code set using a plurality of LDGC with code rate R0 and different code lengths, wherein the LDGC mother code set has a uniform base matrix Gbuniform={(gi, jb)uniform}kb×nb; obtain length L of an intermediate variable according to a relationship between length K of an information bit sequence to be encoded in the LDGC mother code set and length L of the intermediate variable; obtain an expanding factor z for processing the base matrix using the length of the intermediate variable and the number of rows in the base matrix; process the base matrix using the expanding factor to obtain a binary generator matrix Gtmp, the front L rows and front L columns of which compose a triangular matrix; modify the binary generator matrix to obtain a modified binary generator matrix; take a matrix Gldgc composed of L rows and the front N+L−K columns of the modified binary generator matrix as a generator matrix of the information bit sequence to encode the information bit sequence.
Abstract:
An encoding method, encoding device, decoding method and decoding device for low density generator matrix codes (LDGC) are disclosed. Wherein, the encoding method comprises: construct an LDGC mother code set using P LDGC with code rate R0 and different code lengths, wherein the LDGC mother code set has a uniform basic matrix Gbuniform wherein, R 0 = k b n b , kb denotes the number of rows and nb denotes the number of columns in the basic matrix; obtain length L of an intermediate variant according to length K of an information bit sequence to be encoded in the LDGC mother code set; modify and expand the basic matrix to obtain a generator matrix Gldgc using the length L of the intermediate variant and the number kb of rows in the basic matrix; and encode the information bit sequence to be encoded using a matrix Gldgc (1:L,1:N+L−K) composed of L rows and the front N+L−K columns of the generator matrix, wherein N denotes the length of the encoded information.