摘要:
A molded polymeric container that is shaped to exhibit superior characteristics of light weighting, stability against toppling and resistance to stress cracking includes a conventional cylindrical body portion having a longitudinal axis and a circumferential sidewall and a novel bottom portion. The bottom portion includes a central pushup area of uniformity that is substantially uniform within a spatial rotation about the longitudinal axis. The area of uniformity has a radius RG. The bottom also includes a plurality of support feet that surround and protrude downwardly from the pushup area. Each of the support feet have a bottom support surface with an inner point of contact and an outer point of contact. The outer points of contact together define an outer contact radius ROC. The bottom portion as a whole has a radius of maximum width RBASE. A plurality of ribs are positioned in valleys between the support feet. Each of these ribs is positioned between and helps define two of the support feet. At least one of the ribs has a localized radius of curvature RC that intersects an arc connecting inner points of contact of two adjacent support feet. Advantageously, the radius of uniformity is within the range of about 16% to about 26% of ROC; and RC is within the range of about 70% to about 110% of RBASE.
摘要:
A plastic container that is designed for optimal strength and lightweighting characteristics includes a finish portion, a bottom portion that has a plurality of support feet and a corresponding number of grooves defined between the support feet, and a main body portion. According to one feature of the container, the main body portion has at least one groove defined in its smooth label area that is oriented so as to have an axial component and so as to extend to near a bottom of the label portion for permitting condensate to drain from the label portion. This reduces the potential for condensation-induced label delamination. According to another feature of the container, the main body portion further has a tapered neck portion that has a plurality of undulating grooves defined therein to provide structural reinforcement. The main body of the container also has a lower end that is configured so as to have a number of generally axially extending channels that extend toward the bottom portion. Some of these channels merge into the grooves, and others terminate before reaching the bottom portion. The channels provide a structural reinforcement effect, whereby enhanced structural reinforcement of said lower end is achieved without increasing the number of support feet and grooves.
摘要:
A preform (10) for producing a plastic preform for forming blow molded plastic containers which comprises: a neck portion (16) defining an opening; a tubular sidewall portion (24) depending therefrom; and an integral base structure (28) depending from the tubular sidewall portion to a closed end (32); the preform having an outside wall face and an inside wall face with one of these, in the base structure, having integrally formed thereon a plurality of filets (36), extending longitudinally of the preform and defining a reinforcement (38) of varying thickness spaced from the closed end and circumscribing the base structure, wherein the filets decrease progressively in width and radial thickness at least from the reinforcing ring toward the closed end. The preform is capable of forming a blow molded plastic container with a bottom portion (130) having a reinforcement of circumferentially continuous radially extending alterations in wall thickness with a regularly undulating cross-section along the circumference. Preferably the filets are integral with the inside wall face. The invention also covers a mold-core rod combination for making such a preform, a process of using such a preform to make plastic containers by stretch/blow molding and containers including containers when produced from said preforms or combinations, or by said process.
摘要:
Hollow plastic blow-molded containers have a tubular bodies and integral improved, self-supporting bases. The bases have distinctly shaped supporting feet disposed on legs at or near the periphery of the container bottom. The container legs extend outwardly and downwardly from the central region of the container on the inner side of the container bottom and extend downwardly from the container sidewalls on the outer side and are separated by ribs which coverage in a central region at the base of the container. At the terminal end of each of the container legs, there are horizontal contact surfaces or feet which are defined by foot edges which include an inner foot edge portion and an outer foot edge portion, the outer foot edge portion includes a pair of outer far corner foot edges and a far middle foot edge portion. The far middle foot edge portion extends radially to a point further than the outer far corner foot edges. The differences between the middle and far outer corner foot edge radii give rise to a container footprint which is essentially non-uniform with the circumference of the container. The unique, non-uniform footprint provides manufacturing advantages in terms of an expanded processing window which is well-suited to a high speed manufacturing environment.