Abstract:
A method of modifying the viscosity characteristics of a starchy flour by physical treatment, including heating in alcohol in a confined zone. The resulting starchy flour exhibits thin-thick viscosity characteristics when heated, and provides added viscosity in acid systems without breaking down. It has particular application to baby food recipes to impart desired texture and mouthfeel. Oat flour is the presently preferred starchy flour to be treated for use in baby foods.In one embodiment, a starchy flour is slurried in an aqueous organic liquid, preferably ethanol, and is then subjected to heat and pressure for a predetermined time to modify the physical properties of the flour. The specific combination of pressure, temperature, and heating time determine the properties of the treated flour. The alcohol treatment of the starchy flour may be performed continuously by forcing the starchy slurried in alcohol through a tubular confined zone under the required conditions of heat, pressure and residence time in the reactor to accomplish the desired physical changes. The continuous process greatly improves production rates.
Abstract:
Thin-thick, hydroxypropylated, epichlorohydrin cross-linked starch derivatives for continuous process pressure cooking of neutral or acid food systems. The degree of cross-linking for these starch derivatives is carefully controlled so that they are initially low in viscosity and develop full viscosity only under high pressure and temperatures. These characteristics make these starches ideally suited for use in recently developed food canning processes in which initial rapid heat penetration without degrading the starch derivative is necessary for the heat sterilization of the canned foods. For the new continuous retort processing, the usual time allowed for the complete retorting cycle is less than twenty minutes, and this must include heat sterilization. As the retort media using the starch derivative of the invention reaches the heat sterilization temperature it then increases in viscosity to a range which retains the canned food product in a desirable suspension. In addition, these starch derivatives are non-gelling and freeze-thaw stable. The new starches are also useful in making prepared foods which, although not subjected to retorting, are processed at high temperatures ranging from about 190.degree. F. to about 240.degree. F.