Abstract:
An apparatus for registering sheet material while being conveyed along a feed path including: (i) a conveyance deck for conveying sheet material along a support surface, (ii) a registration member defining an abutment surface operative to align an edge of the sheet material as the sheet material is conveyed along the support surface of the conveyance deck, and (iii) a drive mechanism disposed adjacent to the registration member and along the conveyance deck. The drive mechanism includes a flexible belt disposed about and supported by at least two rolling elements, and a means for driving the flexible belt about the rolling elements. The flexible belt includes a twisted section defining a plurality of spiral edge segments operative to (i) frictionally engage a surface of the sheet material to urge the sheet material against the abutment surface and (ii) convey the sheet material along the conveyance deck.
Abstract:
An arrangement for mounting an ingestion assembly within a singulating apparatus operative to singulate and convey sheet material along a feed path. The mounting arrangement includes a radial bearing pivotally mounting the ingestion assembly to a stationary support structure of the singulating apparatus. The radial bearing is operative to pivot the singulating assembly from an operating position to an idle position about a pivot axis which is substantially orthogonal to the feed path of the sheet material. The mounting arrangement also includes an over-center mechanism disposed in combination with the radial bearing for biasing the ingestion assembly about the pivot axis such that the ingestion assembly is forcibly held in each of the operating and idle positions. Optimum space utilization and ease of use is provided by the radial bearing which cantilever mounts the ingestion assembly to the singulating apparatus.
Abstract:
A Right Angle Turn (RAT) module for processing multi-sheet collations includes opposed belt segments defining a conveyance channel for capturing multi-sheet collations therebetween and for conveying multi-sheet collations from an input and to an output end of the conveyance channel. The opposed belt segments define a first re-directing bend, a second re-directing bend, and a twist section disposed therebetween. The first re-directing bend includes a rolling element for re-directing the opposed belt segments about a first axis of rotation while the second re-directing bend includes a rolling element for re-directing the opposed belt segments about a second axis of rotation. The first and second axes of rotation are orthogonal to each other so as to effect a twist section therebetween. The RAT module additionally includes a mechanism for driving the opposed belt segments about the first and second re-directing bends to convey the multi-sheet collations from the input to output ends and effect a right angle turn of the multi-sheet collations.
Abstract:
A feed input assembly for accepting and conveying sheet material of variable length along a feed path including a processing station for performing an operation on the sheet material and an ingestion assembly adapted to capture the sheet material between the opposed friction drive surfaces and accept a leading edge of the sheet material from the processing station at a point of entry. The ingestion assembly includes transport elements having positionable opposed friction drive surfaces which are adapted to vary point of entry along the feed path. By varying the point of entry, sheet material of variable length can be accepted without varying the position of the processing station relative to the ingestion assembly. A method for operating a feed input assembly having positionable friction drive surfaces is also described.
Abstract:
A Right Angle Turn (RAT) module for processing multi-sheet collations includes opposed belt segments defining a conveyance channel for capturing multi-sheet collations therebetween and for conveying multi-sheet collations from an input and to an output end of the conveyance channel. The opposed belt segments define a first re-directing bend, a second re-directing bend, and a twist section disposed therebetween. The first re-directing bend includes a rolling element for re-directing the opposed belt segments about a first axis of rotation while the second re-directing bend includes a rolling element for re-directing the opposed belt segments about a second axis of rotation. The first and second axes of rotation are orthogonal to each other so as to effect a twist section therebetween. The RAT module additionally includes a mechanism for driving the opposed belt segments about the first and second re-directing bends to convey the multi-sheet collations from the input to output ends and effect a right angle turn of the multi-sheet collations.
Abstract:
A feed input assembly for accepting and conveying sheet material of variable length along a feed path including a processing station for performing an operation on the sheet material and an ingestion assembly adapted to capture the sheet material between the opposed friction drive surfaces and accept a leading edge of the sheet material from the processing station at a point of entry. The ingestion assembly includes transport elements having positionable opposed friction drive surfaces which are adapted to vary point of entry along the feed path. By varying the point of entry, sheet material of variable length can be accepted without varying the position of the processing station relative to the ingestion assembly. Also, a method for operating a feed input assembly having positionable friction drive surfaces.
Abstract:
A roller assembly for conveying stacked sheet material along a feed path. The roller assembly includes a first roller adapted for rotation within a housing, a second roller pivotally mounting about an axis to the housing and opposing the first roller to define a roller nip, a spring biasing mechanism operative to bias the second roller about the pivot axis toward the first roller to effect optimum frictional engagement of the roller nip with the face surfaces of the stacked sheet material and a transmission assembly operative to (i) transfer rotational motion of the first roller to the second roller, (ii) drive the first and second rollers in opposing directions to convey the stacked sheet material along the feed path, and (iii) facilitate pivot motion of the second roller about the pivot axis to vary the spacing of the roller nip and accommodate stacks of sheet material which vary in thickness.
Abstract:
An apparatus is provided for altering the spatial orientation and/or direction of sheet material. The apparatus includes an input deck for receiving sheet material along an input feed path, an output deck for forwarding sheet material along an output feed path, and an orbit nip roller assembly disposed adjacent to and aligned with the input and output decks. The orbit nip roller assembly includes a primary and secondary roller defining a roller nip which lies substantially parallel to the input and output feed paths. The secondary roller is adapted to be bi-directionally displaced in an arc about the periphery of the primary roller such that the roller nip orbits the primary roller from a first radial position to a second radial position. In the first radial position, the roller nip is adapted to accept sheet material from the input deck at a substantially right angle relative to the input feed path and, in the second radial position, the roller nip is adapted to dispense sheet material to the output deck at a substantially right angle relative to the output feed path.
Abstract:
A roller assembly for conveying stacked sheet material along a feed path. The roller assembly includes a first roller adapted for rotation within a housing, a second roller pivotally mounting about an axis to the housing and opposing the first roller to define a roller nip, a spring biasing mechanism operative to bias the second roller about the pivot axis toward the first roller to effect optimum frictional engagement of the roller nip with the face surfaces of the stacked sheet material and a transmission assembly operative to (i) transfer rotational motion of the first roller to the second roller, (ii) drive the first and second rollers in opposing directions to convey the stacked sheet material along the feed path, and (iii) facilitate pivot motion of the second roller about the pivot axis to vary the spacing of the roller nip and accommodate stacks of sheet material which vary in thickness.
Abstract:
An arrangement for mounting an ingestion assembly within a singulating apparatus operative to singulate and convey sheet material along a feed path. The mounting arrangement includes a radial bearing pivotally mounting the ingestion assembly to a stationary support structure of the singulating apparatus. The radial bearing is operative to pivot the singulating assembly from an operating position to an idle position about a pivot axis which is substantially orthogonal to the feed path of the sheet material. The mounting arrangement also includes an over-center mechanism disposed in combination with the radial bearing for biasing the ingestion assembly about the pivot axis such that the ingestion assembly is forcibly held in each of the operating and idle positions. Optimum space utilization and ease of use is provided by the radial bearing which cantilever mounts the ingestion assembly to the singulating apparatus.