Abstract:
In a method and apparatus for amplifying and/or generating electromagnetic wave radiation, a gas plasma region having a non-Maxwellian electron distribution is produced by effecting collisions between scattering particles in the gas with free electrons which have been accelerated to an energy level which is greater than that providing maximum probability of collision of the electrons with scattering particles in said gas; and the electromagnetic wave radiation is subjected to the plasma region such as to produce amplification of the radiation by stimulated emission of Bremstrahlung from scattered free electrons in the plasma region.
Abstract:
The present invention provides a source of plurality of radiation types using a single source that is made of ferroelectric material in the form of a cathode. The generated radiation types consist of ion and electron beams, X-ray, visible light and ultraviolet radiation. These types allow testing the surface and bulk of the same medium while placed in the same location and are providing confirmation and independent measurements of the material properties. The cathode is made with a continuous electrode on one side and a grid shape electrode on the other. This cathode is supported with fixtures that are used to produce various radiation types. Also, control elements are used to define the shape and directivity of the emitted beam. The present invention eliminates the need for plurality of instruments for obtaining required properties of test materials covering both the surface and the bulk of the test medium. The disclosed source emits multiple types of charged particles and radiation using switchable electromechanical elements. The source performance is enhanced by use of a ferroelectric wafer with a high dielectric constant, and the control of the driving pulse shape. A set of stacks and arrays of multiplexed ferroelectric cathode wafers are used to offer various options in the design of the Ferrosource.