Abstract:
Methods, systems and computer program products for estimating the gestational age of a fetus are provided. According to one embodiment, the method generates a component image from a segmented ultrasound image of a fetal head. The component image includes one or more edges. The method then identifies a third ventricle within the component image. The method estimates a length of a bi-parietal diameter, based at least in part on the orientation of the third ventricle. Thereafter, the method estimates the gestational age of the fetus.
Abstract:
Methods, systems and computer program products for estimating the gestational age of a fetus are provided. According to one embodiment, the method generates a component image from a segmented ultrasound image of a fetal head. The component image includes one or more edges. The method then identifies a third ventricle within the component image. The method estimates a length of a bi-parietal diameter, based at least in part on the orientation of the third ventricle. Thereafter, the method estimates the gestational age of the fetus.
Abstract:
An ultrasound system includes a transducer array comprising a multiplicity of transducer elements configured to acquire image data of an object, a display system for displaying an image of the object based on the acquired image data, and an image processor module. The image processor module is programmed to calculate the curvature of the image, and identify an object feature based on the calculated curvature and based on known feature tendencies of the object.
Abstract:
A method for identifying an optimal image frame is presented. The method includes receiving a selection of an anatomical region of interest in an object of interest. Furthermore, the method includes obtaining a plurality of image frames corresponding to the selected anatomical region of interest. The method also includes determining a real-time indicator corresponding to the plurality of acquired image frames, wherein the real-time indicator is representative of quality of an image frame. In addition, the method includes communicating the real-time indicator to aid in selecting an optimal image frame. Systems and non-transitory computer readable medium configured to perform the method for identifying an optimal image frame are also presented.
Abstract:
A method for identifying an optimal image frame is presented. The method includes receiving a selection of an anatomical region of interest in an object of interest. Furthermore, the method includes obtaining a plurality of image frames corresponding to the selected anatomical region of interest. The method also includes determining a real-time indicator corresponding to the plurality of acquired image frames, wherein the real-time indicator is representative of quality of an image frame. In addition, the method includes communicating the real-time indicator to aid in selecting an optimal image frame. Systems and non-transitory computer readable medium configured to perform the method for identifying an optimal image frame are also presented.