Abstract:
A method for identifying an optimal image frame is presented. The method includes receiving a selection of an anatomical region of interest in an object of interest. Furthermore, the method includes obtaining a plurality of image frames corresponding to the selected anatomical region of interest. The method also includes determining a real-time indicator corresponding to the plurality of acquired image frames, wherein the real-time indicator is representative of quality of an image frame. In addition, the method includes communicating the real-time indicator to aid in selecting an optimal image frame. Systems and non-transitory computer readable medium configured to perform the method for identifying an optimal image frame are also presented.
Abstract:
A method and system for fluorescence imaging of a target in a subject comprising a scattering medium is provided. The method comprises illuminating one or more points on a surface of the scattering medium using an illumination source, wherein the plurality of points define an illumination region, collecting emitted light from an illumination region and an area away from the illumination region, and generating an image of the scattering medium using the emitted light.
Abstract:
A method and system for fluorescence imaging of a target in a subject comprising a scattering medium is provided. The method comprises illuminating one or more points on a surface of the scattering medium using an illumination source, wherein the plurality of points define an illumination region, collecting emitted light from an illumination region and an area away from the illumination region, and generating an image of the scattering medium using the emitted light.
Abstract:
A method for identifying an optimal image frame is presented. The method includes receiving a selection of an anatomical region of interest in an object of interest. Furthermore, the method includes obtaining a plurality of image frames corresponding to the selected anatomical region of interest. The method also includes determining a real-time indicator corresponding to the plurality of acquired image frames, wherein the real-time indicator is representative of quality of an image frame. In addition, the method includes communicating the real-time indicator to aid in selecting an optimal image frame. Systems and non-transitory computer readable medium configured to perform the method for identifying an optimal image frame are also presented.
Abstract:
A technique is provided for imaging based on localization of fluorescence in a medium. The technique includes illuminating the medium with an excitation light to excite fluorescence, scanning the medium at a plurality of locations via an ultrasonic beam, modulating a portion of the emitted light from the fluorescence via the ultrasonic beam at each of the plurality of locations, differentially detecting the modulated light at a boundary of the medium, and reconstructing an image from the detected signal.
Abstract:
Methods and systems and computer program products for automatically segmenting the volume of interest from intensity images are provided. The method for segmenting a volume of interest in an intensity image receives the intensity image and the scanner acquisition parameters used to acquire the intensity image. The method then scales the contrast of the intensity image based, at least in part, on the scanner acquisition parameters. The method segments the intensity image based, at least in part, on image data of the intensity image and the scanner acquisition parameters, to obtain the volume of interest.