Abstract:
A method for achieving fast and efficient measurement of path capacity of a communication network. The method includes the following steps: (a) transmitting a number of probes from a local endpoint to a remote endpoint over a network path and each probe contains at least two outgoing packets and each probe can elicit at least two response packets from the remote endpoint; (b) determining a first minDelay by measuring RTT between the time sending the first probe packet and the time receiving the first response packet; (c) determining a second minDelay by measuring RTT between the time sending the second probe packet and the time receiving the second response packet; and (d) determining a minimum delay difference by subtracting said first minDelay from said second minDelay. The minimum delay difference divided by packet size can be used as a measurement of the network path capacity.
Abstract:
The present invention discloses a high electron mobility transistor (HEMT) and a manufacturing method thereof. The HEMT device includes: a substrate, a first gallium nitride (GaN) layer; a P-type GaN layer, a second GaN layer, a barrier layer, a gate, a source, and a drain. The first GaN layer is formed on the substrate, and has a stepped contour from a cross-section view. The P-type GaN layer is formed on an upper step surface of the stepped contour, and has a vertical sidewall. The second GaN layer is formed on the P-type GaN layer. The barrier layer is formed on the second GaN layer. two dimensional electron gas regions are formed at junctions between the barrier layer and the first and second GaN layers. The gate is formed on an outer side of the vertical sidewall.