摘要:
A lightning detector for lightning detection and a lightning detection method, wherein the lightning detector uses at least two separate channels or frequency bands for lightning detection, and wherein the lightning detector is a mobile RF device provided with radio interfaces for at least two communication channels or frequency bands, whereby at least one of which is normally a telecom channel/frequency range and wherein these channels/ranges are used in lightning detection.
摘要:
A method for use by a mobile station in a cellular telephone network in determining a setting for gain control for a first idle period in a succession of idle periods of the serving base station, the method including: determining whether at the location of the mobile phone, the load attributable to any one of the neighboring or active set base stations differs substantially from the load attributable to at least one other of the neighboring or active set base stations, the determining being based only on information already available to the mobile station; and determining the gain control setting based on a calculation of the relative power decrease made according to a prescription that depends on whether the load attributable to any one of the neighboring or active set base stations differs from the load attributable to at least one other of the neighboring or active set base stations.
摘要:
A lightning detector for lightning detection and a lightning detection method, wherein the lightning detector uses at least two separate channels or frequency bands for lightning detection, and wherein the lightning detector is a mobile RF device provided with radio interfaces for at least two communication channels or frequency bands, whereby at least one of which is normally a telecom channel/frequency range and wherein these channels/ranges are used in lightning detection.
摘要:
A method is provided for reliably receiving digital information from a transmitting device. The information to be received is arranged in discrete subunits (201, 202, 203, 204, 301, 302, 303, 304) so that a predetermined number of subunits correspond to a superunit (200, 300). It is encoded with a certain error detection code (402), corresponding to a certain error detection decoding method, and additionally with a certain error correction code (403), corresponding to a certain error correction decoding method. According to the invention a superunit is error correction decoded (405), and during the error correction decoding (405), the decoding reliability of each subunit of the superunit to be decoded is separately estimated. The error correction decoded superunit is error detection decoded (406), and during the error detection decoding it is detected, whether or not there were errors in the superunit to be decoded. Partial corrective action (407, 408, 409, 450, 451) is arranged for on the decoded superunit on the basis of the estimated reliabilities of the subunits.
摘要:
A lightning detector for lightning detection and a lightning detection method, wherein the mobile lightning detector is provided with an antenna, an amplifier front-end, an A/D converter and a digital signal processor, and wherein the lightning detector is a mobile RF device provided with an audio codec whereby the preamplifier of the codec is used for amplification of the detected lightning signal, the A/D converter of the codec is used for the A/D conversion of the amplified lightning signal, and whereby the digital audio processing unit of the codec is used for the signal processing of the lightning detection.
摘要:
The invention relates to a data transmission method used in a CDMA-type radio system. A base station and terminal equipments exchange data at least in a packet switched mode, and a terminal equipment transmits to the base station on a random access channel a random access signal comprising at least a preamble (100) and a data part (102) multiplied by a spreading code. A predetermined set of spreading codes and signature sequences (104) are stored in the terminal equipment, and each signature sequence (104) determines one spreading code. The terminal equipment selects one signature sequence (104) by a random process from the set of signature sequences and adds the selected signature sequence (104) to the preamble (100) of the random access signal. Further, the terminal equipment uses the spreading code corresponding to the selected signature sequence (104) in the data part (102) of the random access signal. Interference cancellation is performed at the base station according to the signature sequence (104) of the preamble (100) of the received random access signal, such that at least the interference caused by the received data part (102) is eliminated from at least one other received signal in order to improve detection.
摘要:
The invention relates to a data transmission method used in a CDMA-type radio system. A base station and terminal equipments exchange data at least in a packet switched mode, and a terminal equipment transmits to the base station on a random access channel a random access signal comprising at least a preamble (100) and a data part (102) multiplied by a spreading code. A predetermined set of spreading codes and signature sequences (104) are stored in the terminal equipment, and each signature sequence (104) determines one spreading code. The terminal equipment selects one signature sequence (104) by a random process from the set of signature sequences and adds the selected signature sequence (104) to the preamble (100) of the random access signal. Further, the terminal equipment uses the spreading code corresponding to the selected signature sequence (104) in the data part (102) of the random access signal. Interference cancellation is performed at the base station according to the signature sequence (104) of the preamble (100) of the received random access signal, such that at least the interference caused by the received data part (102) is eliminated from at least one other received signal in order to improve detection.
摘要:
A method is presented for estimating the reliability of a data sequence after Viterbi decoding. Within the Viterbi decoding, corresponding to an initial time instant, the possible initial states for the Viterbi decoding are established (801). After proceeding to a subsequent time instant (804), at each state corresponding to the present time instant, a surviving trellis path is selected among the trellis paths coming into that state (805). The steps of proceeding and selecting are repeated until a final time instant (807), and at said final time instant a final surviving trellis path is selected to represent the decoded data sequence. At the selection step of the Viterbi decoding, a characteristic reliability metric is updated separately in association with each selected surviving trellis path (806). After selecting a final surviving trellis path, its characteristic reliability metric is converted to a sequence reliability statistic corresponding to the estimated reliability of the decoded data sequence (809, 810-814).