Abstract:
A technology concerning a pair of spectacle lenses for binocular vision. In each of the pair of spectacle lenses for binocular vision, when an inner horizontal direction of each of the spectacle lenses is a direction toward the nose of a user who wears the spectacle lenses, and an outer horizontal direction of the spectacle lenses is a direction toward an ear of the user, a portion for viewing an object at finite distance is provided in each of the pair of spectacle lenses for binocular vision and a shape of a base in prism is formed in the position such that a line of sight of a user viewing an object through the portion is directed to a direction that is different from a direction from the object.
Abstract:
A spectacle lens capable of obtaining a good vision without feeling of discomfort, even being fitted into a frame having a large front angle, and a method of creating the shape data of the spectacle lens having dioptric power to be fitted into a frame having a lens front angle. The method corrects the shape data of a lens back surface so that the prismatic effect undergone via the lens of initial lens shape by a plurality of rays passing through a rotation center of the eye in a case where a lens front angle is provided is identical or close to the prismatic effect undergone via the lens of initial lens shape by the plurality of rays passing through the rotation center of the eye in a case where no lens front angle is provided.
Abstract:
An evaluation method of a progressive-addition lens is provided. First, powers of the progressive-addition lens at a plurality of measurement points are measured to obtain an actually measured power distribution. Next, a comparison power distribution created based on the actually measured power distribution and a defective power distribution prepared in advance are compared with each other to perform similarity search between the both. Thereafter, whether or not the comparison power distribution and the defective power distribution are similar to each other is determined based on the result of the similarity search step, and if it is determined that the comparison power distribution and the defective power distribution are similar to each other, then the progressive-addition lens is evaluated as defective.
Abstract:
The present invention is to provide a lens evaluation method capable of easily evaluating whether there is a difference which greatly changes locally in a lens, and evaluating the degree of the difference. According to the lens evaluation method of the present invention, first, power a distribution of a plurality of measurement point in an arbitrary direction. Next, a calculation power distribution (a design power distribution) is created. Further, a difference distribution between an actually measured power distribution, which indicates an actual power distribution, and a calculation power distribution is obtained. Further, the difference distribution is differentiated to obtain a difference index, and an evaluation is performed based on the difference index to evaluate whether there is a difference which greatly changes locally in a lens, and evaluate the degree of the difference.
Abstract:
A pair of spectacle lenses for binocular vision. In each of the pair of spectacle lenses for binocular vision, when an inner horizontal direction of each of the spectacle lenses is a direction toward the nose of a user who wears the spectacle lenses, and an outer horizontal direction of each of the spectacle lenses is a direction toward an ear of the user, a portion for viewing an object at finite distance is provided and a shape of a base out prism is formed in the position such that a line of sight of a user viewing an object through the portion is directed to a direction that is different from a direction from the object.
Abstract:
A progressive addition lens, a manufacturing method and a design method therefor, and a progressive addition lens manufacturing system, capable of flexibly adapting to an actual use state of a wearer and are optimal for each wearer, for determining a main line of sight considering not only convergence of the eye occurring with near vision including passive accommodative power but also convergence of the eye induced by using an accommodative power margin of the eye. The design method includes a first main line of sight calculation step of calculating a first main line of sight, where accommodative convergence caused by use of the accommodative power margin is considered, based on lens design information including at least information of accommodative power of the eye and a final main line of sight determination step of determining a final main line of sight of a lens from the first main line of sight.
Abstract:
A spectacle lens capable of obtaining a good vision without feeling of discomfort, even being fitted into a frame having a large front angle, and a method of creating the shape data of the spectacle lens having dioptric power to be fitted into a frame having a lens front angle. The method corrects the shape data of a lens back surface so that the prismatic effect undergone via the lens of initial lens shape by a plurality of rays passing through a rotation center of the eye in a case where a lens front angle is provided is identical or close to the prismatic effect undergone via the lens of initial lens shape by the plurality of rays passing through the rotation center of the eye in a case where no lens front angle is provided.
Abstract:
In a progressive-addition lens having a progressive surface on one side and an aspherical or atoroidal surface on the other side, the lens shape is designed so that a high degree of aberration correction can be carried out on the periphery of the lens and the distance power and addition power of the lens acting on the eye of a wearer substantially correspond to the distance power and addition power measured by a lens meter. A progressive-addition lens includes a progressive surface and an aspherically designed surface formed of an aspherical or atoroidal surface, and the reference point of the aspherically designed surface is located in the vertical direction of the lens below a prism reference point of the progressive surface and above a near design reference point.
Abstract:
The present invention is to provide a lens evaluation method capable of easily evaluating whether there is a difference which greatly changes locally in a lens, and evaluating the degree of the difference. According to the lens evaluation method of the present invention, first, power a distribution of a plurality of measurement point in an arbitrary direction. Next, a calculation power distribution (a design power distribution) is created. Further, a difference distribution between an actually measured power distribution, which indicates an actual power distribution, and a calculation power distribution is obtained. Further, the difference distribution is differentiated to obtain a difference index, and an evaluation is performed based on the difference index to evaluate whether there is a difference which greatly changes locally in a lens, and evaluate the degree of the difference.
Abstract:
In a progressive-addition lens having a progressive surface on one side and an aspherical or atoroidal surface on the other side, the lens shape is designed so that a high degree of aberration correction can be carried out on the periphery of the lens and the distance power and addition power of the lens acting on the eye of a wearer substantially correspond to the distance power and addition power measured by a lens meter. A progressive-addition lens includes a progressive surface and an aspherically designed surface formed of an aspherical or atoroidal surface, and the reference point of the aspherically designed surface is located in the vertical direction of the lens below a prism reference point of the progressive surface and above a near design reference point.