Satellite communications systems using satellites in a zero-drift constellation
    1.
    发明授权
    Satellite communications systems using satellites in a zero-drift constellation 失效
    使用零漂移星座中的卫星的卫星通信系统

    公开(公告)号:US06198907B1

    公开(公告)日:2001-03-06

    申请号:US09016976

    申请日:1998-02-02

    IPC分类号: H04B7185

    CPC分类号: H04B7/18541 H04B7/195

    摘要: A zero-drift constellation (200 FIG. 2) is used to simplify the tracking and hand-off requirements of terrestrial-based user terminals (110 FIG. 1). Each satellite (120 FIG. 1) traces out a common ground track which has a number of southbound segments and an equal number of adjacent northbound segments. This allows user terminals (110) to employ antennas with only one degree of freedom to track satellites (120) in zero-drift constellation (200). User terminals (110) perform hand-offs with satellites (120) that are within a limited field of view with respect to user terminal (110). User terminal (110) tracks a first satellite until a crossover point is reached and then performs a hand-off to a second satellite traveling in the opposite direction along an adjacent segment. User terminal (110) tracks the second satellite until another crossover point is reached and then performs a hand-off to a third satellite traveling in the same direction as the first satellite along an adjacent segment.

    摘要翻译: 零漂移星座(200图2)用于简化基于地面的用户终端的跟踪和切换要求(图1的110)。 每个卫星(120图1)描绘出具有多个南向段和相等数量的相邻北行段的公共地面轨道。 这允许用户终端(110)采用仅具有一个自由度的天线来跟踪零漂移星座图(200)中的卫星(120)。 用户终端(110)执行与卫星(120)的切换,所述卫星相对于用户终端(110)在有限的视场内。 用户终端(110)跟踪第一卫星直到达到交叉点,然后执行到沿相邻段沿相反方向行进的第二卫星的切换。 用户终端(110)跟踪第二卫星直到达到另一个交叉点,然后执行与沿着相邻段的与第一卫星相同的方向行进的第三卫星的切换。

    Combined mechanical scanning and digital beamforming antenna
    2.
    发明授权
    Combined mechanical scanning and digital beamforming antenna 有权
    组合机械扫描和数字波束成形天线

    公开(公告)号:US06169522A

    公开(公告)日:2001-01-02

    申请号:US09389637

    申请日:1999-09-03

    IPC分类号: H01Q2100

    摘要: A mechanical scanning and digital beamforming antenna (20, FIG. 2) uses a receive and transmit digital beamforming network (FIG. 3, 410, 320) to provide communications beam scanning in a first plane. In a second plane, a reflective surface (FIG. 2, 240) is used to focus and scan the communications beam. Through proper orientation of the reflective surface (240), a communications satellite (FIG. 1, 10) can be tracked by way of electronic scanning by way of the transmit or receive digital beamforming network (FIG. 3, 320, 410). Thus, the complexity of the digital beamforming network is reduced as is the wear on the mechanical components of the antenna. The mechanical scanning and digital beamforming antenna (20, FIG. 20) makes use of a second digital beamforming network (FIG. 3, 415, 325) and reflective surface (FIG. 3, 250) to ensure that two communications satellites can be simultaneously tracked.

    摘要翻译: 机械扫描和数字波束形成天线(图2中的20)使用接收和发射数字波束成形网络(图3,410,320)在第一平面中提供通信波束扫描。 在第二平面中,使用反射表面(图2,240)来聚焦和扫描通信光束。 通过反射表面(240)的适当取向,可以通过电子扫描通过发送或接收数字波束形成网络跟踪通信卫星(图1,图10)(图3,320,410)。 因此,数字波束成形网络的复杂性降低了天线的机械部件上的磨损。 机械扫描和数字波束形成天线(图20中的20)利用第二数字波束成形网络(图3,415,325)和反射表面(图3,250)来确保两个通信卫星可以同时 跟踪。