Abstract:
An optical network is disclosed comprising one or more photonic switching nodes is disclosed. Each of the switching nodes comprises a plurality of input ports; at least one output port; and a switch configured to route messages between the plurality of input ports and the at least one output port and provide bufferless resolution of contention between messages for a common output port.
Abstract:
An on-chip data communications infrastructure includes a hybrid, photonic/electronic network. The network includes a plurality of interconnected optical switches, each under the control of an electronic router. The electronic routers are connected in a fashion similar to the optical switches, forming a parallel, photonic/electronic network. Electronic path setup messages are routed through the electronic network. At each hop, a photonic switching element in a parallel, photonic network is reserved. When the electronic path setup message reaches its destination, a chain of reserved optical switches is ready to channel the optical data through the photonic network.
Abstract:
An optical data storage system and method of use thereof are presented. The optical data storage system includes one or more optical buffer modules connected in series. Each optical buffer module includes a cross connect. Each cross connect is connected, by a pair of inputs and outputs, to an optical data storage unit, for example, a fiber delay line, by a pair to either an optical packet network or a cross connect of a first adjacent buffer module in the series, and by a pair to a cross connect of a second adjacent buffer module in the series. The buffer module also includes a read signal output line which is connected to a read signal input line of the second adjacent buffer module for transmitting a read signal. A control module within each buffer module directs the passage of data through the cross connect.
Abstract:
An optical network is disclosed comprising one or more photonic switching nodes is disclosed. Each of the switching nodes comprises a plurality of input ports; at least one output port; and a switch configured to route messages between the plurality of input ports and the at least one output port and provide bufferless resolution of contention between messages for a common output port.
Abstract:
An optical switch includes a plurality of first optical fibers, a plurality of second optical fibers, a first MEMS array, and a second MEMS array. The first MEMS array is optically coupled with the first optical fibers to receive optical signals from the first optical fibers and to direct the optical signals, wherein the first MEMS array defines a first array incidence angle between a normal direction to the first MEMS array and a direction of the received optical signals. The second MEMS array is optically coupled with the first MEMS array to receive the directed optical signals and to re-direct the directed optical signals with the second optical fibers wherein the second MEMS array defines a second array incidence angle between a normal direction to second MEMS array and a direction of the re-directed optical signals. The configuration of the components is provided to provide reduced optical losses.
Abstract:
An on-chip data communications infrastructure includes a hybrid, photonic/electronic network. The network includes a plurality of interconnected optical switches, each under the control of an electronic router. The electronic routers are connected in a fashion similar to the optical switches, forming a parallel, photonic/electronic network. Electronic path setup messages are routed through the electronic network. At each hop, a photonic switching element in a parallel, photonic network is reserved. When the electronic path setup message reaches its destination, a chain of reserved optical switches is ready to channel the optical data through the photonic network.
Abstract:
The described subject matter concerns efficient routing of data in an optical network. An optical switching element utilizes a noise reduction circuit to eliminate glitches in the optical signal, and thereby enable highly scalable, cascadeable switching networks to be constructed. The current driver is directly bonded to the SOA to reduce delays ordinarily associated with data transfer through packaging pins.
Abstract:
An optical data storage system and method of use thereof are presented. The optical data storage system includes one or more optical buffer modules connected in series. Each optical buffer module includes a cross connect. Each cross connect is connected, by a pair of inputs and outputs, to an optical data storage unit, for example, a fiber delay line, by a pair to either an optical packet network or a cross connect of a first adjacent buffer module in the series, and by a pair to a cross connect of a second adjacent buffer module in the series. The buffer module also includes a read signal output line which is connected to a read signal input line of the second adjacent buffer module for transmitting a read signal. A control module within each buffer module directs the passage of data through the cross connect.