Structured cross-lingual relevance feedback for enhancing search results
    1.
    发明授权
    Structured cross-lingual relevance feedback for enhancing search results 有权
    结构化的跨语言相关性反馈,以增强搜索结果

    公开(公告)号:US08645289B2

    公开(公告)日:2014-02-04

    申请号:US12970879

    申请日:2010-12-16

    IPC分类号: G06F15/18

    CPC分类号: G06F17/30669 G06F17/30675

    摘要: A “Cross-Lingual Unified Relevance Model” provides a feedback model that improves a machine-learned ranker for a language with few training resources, using feedback from a more complete ranker for a language that has more training resources. The model focuses on linguistically non-local queries, such as “world cup” (English language/U.S. market) and “copa mundial” (Spanish language/Mexican market), that have similar user intent in different languages and markets or regions, thus allowing the low-resource ranker to receive direct relevance feedback from the high-resource ranker. Among other things, the Cross-Lingual Unified Relevance Model differs from conventional relevancy-based techniques by incorporating both query- and document-level features. More specifically, the Cross-Lingual Unified Relevance Model generalizes existing cross-lingual feedback models, incorporating both query expansion and document re-ranking to further amplify the signal from the high-resource ranker to enable a learning to rank approach based on appropriately labeled training data.

    摘要翻译: “跨语言统一相关性模型”提供了一种反馈模型,可以为少数培训资源的语言改进机器学习游戏者,使用更完整的游戏者的反馈来获得具有更多培训资源的语言。 该模式侧重于语言上的非本地查询,例如“世界杯”(英语/美国市场)和“复合世界”(西班牙语/墨西哥市场),在不同语言和市场或区域具有类似的用户意图,因此 允许低资源游击队员接收来自高资源队员的直接相关反馈。 其中,跨语言统一相关性模型与传统的相关性技术不同,包括查询和文档级功能。 更具体地说,跨语言统一相关性模型概括了现有的跨语言反馈模型,其中包括查询扩展和文档重新排序,以进一步放大来自高资源游戏者的信号,以使学习能够基于适当标记的训练进行排名 数据。

    STRUCTURED CROSS-LINGUAL RELEVANCE FEEDBACK FOR ENHANCING SEARCH RESULTS
    2.
    发明申请
    STRUCTURED CROSS-LINGUAL RELEVANCE FEEDBACK FOR ENHANCING SEARCH RESULTS 有权
    用于增强搜索结果的结构化交叉关联反馈

    公开(公告)号:US20120158621A1

    公开(公告)日:2012-06-21

    申请号:US12970879

    申请日:2010-12-16

    IPC分类号: G06F15/18

    CPC分类号: G06F17/30669 G06F17/30675

    摘要: A “Cross-Lingual Unified Relevance Model” provides a feedback model that improves a machine-learned ranker for a language with few training resources, using feedback from a more complete ranker for a language that has more training resources. The model focuses on linguistically non-local queries, such as “world cup” (English language/U.S. market) and “copa mundial” (Spanish language/Mexican market), that have similar user intent in different languages and markets or regions, thus allowing the low-resource ranker to receive direct relevance feedback from the high-resource ranker. Among other things, the Cross-Lingual Unified Relevance Model differs from conventional relevancy-based techniques by incorporating both query- and document-level features. More specifically, the Cross-Lingual Unified Relevance Model generalizes existing cross-lingual feedback models, incorporating both query expansion and document re-ranking to further amplify the signal from the high-resource ranker to enable a learning to rank approach based on appropriately labeled training data.

    摘要翻译: “跨语言统一相关性模型”提供了一种反馈模型,可以为少数培训资源的语言改进机器学习游戏者,使用更完整的游戏者的反馈来获得具有更多培训资源的语言。 该模式侧重于语言上的非本地查询,例如“世界杯”(英语/美国市场)和“复合世界”(西班牙语/墨西哥市场),在不同语言和市场或区域具有类似的用户意图,因此 允许低资源游击队员接收来自高资源队员的直接相关反馈。 其中,跨语言统一相关性模型与传统的相关性技术不同,包括查询和文档级功能。 更具体地说,跨语言统一相关性模型概括了现有的跨语言反馈模型,其中包括查询扩展和文档重新排序,以进一步放大来自高资源游戏者的信号,以使学习能够基于适当标记的训练进行排名 数据。