Abstract:
Systems and methods for remotely controlling a rail vehicle are provided. In one embodiment, a remote operator control system includes a communication link to send and receive rail vehicle information, an operator interface, and a controller. The controller is configured to send, through the communication link, a request to establish communication with a positive train control system on-board a selected rail vehicle based on an operating condition. In response to receiving confirmation of communication with the positive train control system, the control is configured to receive positive train control information for the selected rail vehicle through the communication link, and display the positive train control information for the selected rail vehicle on the operator interface.
Abstract:
Systems and methods for remotely controlling a rail vehicle are provided. In one embodiment, a remote operator control system includes a communication link to send and receive rail vehicle information, an operator interface, and a controller. The controller is configured to send, through the communication link, a request to establish communication with a positive train control system on-board a selected rail vehicle based on an operating condition. In response to receiving confirmation of communication with the positive train control system, the control is configured to receive positive train control information for the selected rail vehicle through the communication link, and display the positive train control information for the selected rail vehicle on the operator interface.
Abstract:
An EGR valve includes a flap is attached to a shaft and is rotatable to control exhaust gas flow through passage. The flap includes sealing ring for sealing against valve seat. A stepped diameter or collar on the shaft is disposed between first and second bearings to fix an axial position of the flap within the passage and relative to the valve seat. The collar fixes the axial position of the shaft to reduce axial movement of the flap and sealing ring relative to the valve seat.
Abstract:
A control system for a rail vehicle system including a lead powered unit and a remote powered unit is provided. The system includes a user interface, a master isolation module and a slave controller. The user interface is disposed in the lead powered unit and is configured to receive an isolation command to turn on or off the remote powered unit. The master isolation module is configured to receive the isolation command from the user interface and to communicate an instruction based on the isolation command. The slave controller is configured to receive the instruction from the master isolation module. The slave controller causes the remote powered unit to supply tractive force to propel the rail vehicle system when the instruction directs the slave controller to turn on the remote powered unit. The slave controller causes the remote powered unit to withhold the tractive force when the instruction directs the slave controller to turn off the remote powered unit.
Abstract:
A control system for a rail vehicle system including a lead powered unit and a remote powered unit is provided. The system includes a user interface, a master isolation module and a slave controller. The user interface is disposed in the lead powered unit and is configured to receive an isolation command to turn on or off the remote powered unit. The master isolation module is configured to receive the isolation command from the user interface and to communicate an instruction based on the isolation command. The slave controller is configured to receive the instruction from the master isolation module. The slave controller causes the remote powered unit to supply tractive force to propel the rail vehicle system when the instruction directs the slave controller to turn on the remote powered unit. The slave controller causes the remote powered unit to withhold the tractive force when the instruction directs the slave controller to turn off the remote powered unit.