Abstract:
A wideband planar dipole antenna comprises a substrate and two antenna bodies. Metal conductor is printed on the single surface/double surfaces of the substrate to form the antenna bodies. With a dipole antenna architecture, the antenna bodies are manufactured as loop structures similar to concentric circles. The loop structures can be of rectangular or circular shapes. Loops of metal conductors with different lengths resonate to obtain similar but different frequencies. Each path of every antenna body can be finally connected with a metal conductor sheet capable of changing to any shape. Every path can interfere with adjacent paths to achieve the wideband effect. An asymmetric mechanism can be added in one of the antenna bodies. Besides letting the antenna have the resonance effect of the symmetric part, the loop path at the signal source can also be increased to enhance the receiving performance of the antenna.
Abstract:
A wideband planar dipole antenna comprises a substrate and two antenna bodies. Metal conductor is printed on the single surface/double surfaces of the substrate to form the antenna bodies. With a dipole antenna architecture, the antenna bodies are manufactured as loop structures similar to concentric circles. The loop structures can be of rectangular or circular shapes. Loops of metal conductors with different lengths resonate to obtain similar but different frequencies. Each path of every antenna body can be finally connected with a metal conductor sheet capable of changing to any shape. Every path can interfere with adjacent paths to achieve the wideband effect. An asymmetric mechanism can be added in one of the antenna bodies. Besides letting the antenna have the resonance effect of the symmetric part, the loop path at the signal source can also be increased to enhance the receiving performance of the antenna.
Abstract:
A method of reducing the photoelectric device leakage current caused by residual metal ions in conjugated polymer. A chelating agent is added to a conjugated polymer material, thereby the conductivity and mobility of metal ions under an electric field are reduced due to the chelation of metal ions by the chelating agent; therefore, the leakage current is reduced and the stability of devices is improved. Furthermore, the activity of metal ions is reduced after the metal ions are chelated by the chelating agent, improving the stability of the material and the devices. A conjugated polymer composition is also provided.