Abstract:
Provided is a channel assignment method in a wavelength-division-multiplexed transmission system. The channel assignment method includes obtaining information about signal modulation schemes from a plurality of optical transmitters, and assigning channels to the respective optical transmitters in consideration of the obtained information about the signal modulation schemes. Accordingly, in transmission of channels of different modulation formats, cross phase modulation is minimized, thereby reducing inter-channel interference.
Abstract:
An apparatus for receiving optical signals in DQPSK and method of controlling a phase offset in receiving optical signals for DQPSK is provided. An original optical signal modulated in DQPSK is received. The original optical signal is delayed by one bit to make a delay optical signal such that an interference on the original optical signal and the delay optical signal is performed. A control signal is generated by use of an interference result between the original optical signal and the delay optical signal. A phase offset for the interference between the original optical signal and the delay optical signal is controlled by use of the generated control signal. In receiving optical signals, the phase offset between the delay optical signal and the original optical signal is precisely controlled, thereby optimizing the transfer characteristics of an optical delay interferometer.
Abstract:
Disclosed are a digital equalization apparatus for a coherent optical receiver and a digital equalization method for a coherent optical receiver, capable of compensating for chromatic dispersion and polarization impairment through a digital signal processing, and capable of performing a clock recovery and a data recovery through a digital symbol synchronization. The digital equalization apparatus and the method compensate for various impairments occurring on an optical path in a digital manner and achieve synchronization through a simple structure.
Abstract:
An optical transmitting apparatus is disclosed. The optical transmitting apparatus outputs a signal having the same phase characteristics as a Return-to-Zero Differential Phase-Shift-Keying (RZ-DPSK) signal by using a single phase modulator. Accordingly, it is possible to generate RZ-DPSK signals without using a separate RZ modulator.
Abstract:
An optical transmission apparatus for high-speed optical signal transmission is provided. The optical transmission apparatus includes an optical modulator which includes first and second modulators of a Mach-Zehnder (MZ) interferometer type which are connected in parallel, and an output stabilizer which controls biases for the first modulator, the second modulator and the optical modulator and stabilizes a final output optical signal of the optical modulator. The optical transmission apparatus can perform a stable optical signal output.
Abstract:
A network node and method for guaranteeing the role of an optical supervisory channel (OSC) in an optical transport network (OTN) are provided. In the network node, at least two OSC units are multiplexed, one of the OSC units is set as a main unit, the other OSC unit is set as an auxiliary unit; and the auxiliary unit is activated when the main unit cannot be operated. Thereby, the network node can guarantee the stable role of the OSC.
Abstract:
An optical packet header processing apparatus for processing a header of an optical packet expressing an address of a destination node to control a switching operation of an optical packet switch. The optical packet header processing apparatus comprises a beam splitter for splitting the optical packet header into a predetermined number of optical packet header elements, and a plurality of time interval detectors. Each of the time interval detectors receives a corresponding one of the optical packet header elements from the beam splitter and outputs a detect optical pulse if a pair of optical pulses having a predetermined time interval therebetween are present in the received optical packet header element. A plurality of optical pulse detectors are adapted to convert the detect optical pulses from the time interval detectors into electrical signals and transfer the converted electrical signals to the optical packet switch, respectively. Therefore, the optical packet switch determines the destination node in response to the electrical signals from the optical pulse detectors and outputs the optical packet to an output port corresponding to the determined destination node.
Abstract:
The present invention is to provide an automatic gain-controlled optical fiber amplifier, comprising: a first optical branch for branching a portion of an optical signal inputted into the optical fiber amplifier; a second optical branch for branching a portion of an optical signal outputted from the optical fiber amplifier; an optical distributor for receiving the optical signal of an input side branched partially by the first optical branch and for outputting it separately; a first wavelength selector for receiving the optical signal of a one side distributed by the optical distributor and for selecting a predetermined wavelength optical signal; a second wavelength selector for receiving the optical signal of an output side branched partially by the second optical branch and for selecting the predetermined wavelength optical signal; a signal processor for receiving the optical signal of a second side distributed by the optical distributor and the predetermined wavelength optical signal selected by the first and second optical wavelength selector and for measuring a total power of an input signal and a number of input channels; and a controller for generating a control signal according to the total power of the input signal and the number of input channels measured by the signal processor.
Abstract:
An apparatus for enhancing the extinction ratio in an optical NRZ-to-RZ converting system, and an optical modulation system, are disclosed. The extinction ratio is improved by using an optical fiber loop mirror together with optical amplifiers. The apparatus for enhancing the extinction ratio includes a variable coupling means for receiving external signals to split them to respective terminals of a loop mirror. A variable optical delaying means delays the phases of the signals after their dispersion by the variable coupling means. An optical amplifying means positioned asymmetrically smaller than a bit time of an RZ signal pattern inputted slightly departed from the center of the loop mirror amplifies the optical intensity, and varies the refractive index so as to cause a phase delay. A polarization adjusting means adjusts the polarization of the optical signals, and an optical band pass filtering means removes noises from signals outputted from the loop mirror. The apparatus is used in an optical NRZ-to-RZ converting system.
Abstract:
An OFDM receiver for compensating for I/Q imbalance is provided. The OFDM receiver includes an I/Q demodulator demodulating a received signal into a baseband in-phase (I) channel signal and a baseband quadrature (Q) channel signal, and an I/Q imbalance compensator compensating for imbalance between the I-channel signal and the Q-channel signal in a time domain. Accordingly, it is possible to solve the I/Q imbalance and suppress degradation in the performance of the OFDM communication device.