摘要:
Methods for enhancing ultrasonic reflection imaging are taught utilizing a split-step Fourier propagator in which the reconstruction is based on recursive inward continuation of ultrasonic wavefields in the frequency-space and frequency-wave number domains. The inward continuation within each extrapolation interval consists of two steps. In the first step, a phase-shift term is applied to the data in the frequency-wave number domain for propagation in a reference medium. The second step consists of applying another phase-shift term to data in the frequency-space domain to approximately compensate for ultrasonic scattering effects of heterogeneities within the tissue being imaged (e.g., breast tissue). Results from various data input to the method indicate significant improvements are provided in both image quality and resolution.
摘要:
Methods for enhancing ultrasonic reflection imaging are taught utilizing a split-step Fourier propagator in which the reconstruction is based on recursive inward continuation of ultrasonic wavefields in the frequency-space and frequency-wave number domains. The inward continuation within each extrapolation interval consists of two steps. In the first step, a phase-shift term is applied to the data in the frequency-wave number domain for propagation in a reference medium. The second step consists of applying another phase-shift term to data in the frequency-space domain to approximately compensate for ultrasonic scattering effects of heterogeneities within the tissue being imaged (e.g., breast tissue). Results from various data input to the method indicate significant improvements are provided in both image quality and resolution.
摘要:
Ultrasound sound-speed tomography requires accurate picks of time-of-flights (TOFs) of transmitted ultrasound signals, however, manual picking on large datasets is time-consuming. An improved automatic TOF picker is taught based on the Akaike Information Criterion (AIC) and multi-model inference (model averaging), based on the calculated AIC values, to improve the accuracy of TOF picks. The automatic TOF picker of the present invention can accurately pick TOFs in the presence of random noise with average absolute amplitude of up to 80% of the maximum absolute synthetic signal amplitude. The inventive method is applied to clinical ultrasound breast data, and compared with manual picks and amplitude threshold picking. Test results indicate that the inventive TOF picker is much less sensitive to data signal-to-noise ratios (SNRs), and performs more consistently for different datasets in relation to manual picking. The technique provides noticeably improved image reconstruction accuracy.