Abstract:
The invention concerns a multiple capillary electrophoresis system including many juxtaposed capillaries, at least one source for transmitting a beam designed to excite the molecules present in its path and inside the capillaries, and detection of the fluorescence of the molecules excited by said beam. The invention is arranged so as to detect the light emerging at the output of said capillaries and propagated along a direction wherein the capillaries extend and the detection resolution is sufficient for distinguishing the light emerging at the output of the capillaries from that coming from the walls thereof and/or their surrounding medium.
Abstract:
An apparatus is disclosed for use on a collimator of a radio-imaging device. The system includes a stack of plates provided with perforations, the thickness (d) of the plates being less than the diameter of the perforations in the internal entry face of the collimator. The thickness of the span between the perforations is made greater than the thickness of the plates.
Abstract:
A non-invasive analysis device including a plurality of sensors (110) combined with collimating structures (120) having a common source focus (O) and processing means (300) providing an AND-type combinational logic function of the output of the sensors (110) for sensing two coincidently transmitted beams that are at least slightly angularly correlated.
Abstract:
A multicapillary electrophoresis system includes juxtaposed capillaries, at least one source configured for the emission of a light beam intended to excite molecules lying in its path and inside the capillaries and detects the fluorescence of the molecules excited by the light beam. Light that emerges at the exit of the capillaries and that propagates along the direction in that the capillaries extend is detected. The resolution for detection is high enough to distinguish light that emerges at the exit of each of the capillaries. A first liquid is located outside of the capillaries. A second liquid is located inside of the capillaries. The first liquid has a first refractive that is equal to or greater than the refractive index of the second liquid. A mirror is facing the source on the side of the capillaries which is opposed to the source.
Abstract:
The invention concerns a multiple capillary electrophoresis device comprising a plurality of juxtaposed capillaries, means for generating inside the capillaries an electric field ensuring electrophoretic migration, at least one source for emitting a beam dsigned to exite the molecules at the capillary output, means for detecting the fluorescence of the molecules excited by said beam. The invention also comprises means for generating another electric field, called confinement electric field, which is regularly distributed around said capillaries and which is substantially parallel thereto, said electric field confining the electrophoretic migration field and forcing the molecules to move substantially without divergence in the axis of said capillaries.
Abstract:
The present invention relates to a low level, high resolution imager of the type comprising a light-amplifier tube (300) including a photocathode (310), at least one microchannel slab (330) serving as an electron amplifier, and a light-emitting phosphor screen (340) provided with a metal layer (342), an electron camera (400) comprising a photosensitive matrix array (410) suitable for transforming a received photon into an electron, and control means (700) for the electron camera, characterized by the fact that the control means (700) comprise an amplifier (710) responsive to the electrons collected on the metal layer (342) of the light-emitting phosphor screen (340) to control integration cycles of the photosensitive matrix array (410) in repetitive one-shot mode synchronized on the appearance of photons at the input of the light-amplifying tube (300).
Abstract:
A very high resolution radiochromatogram for ionizing radiation comprises at least one array made up of a set of filament-like members adapted to enable spatial marking of a surface to be analyzed according to a specific frame of reference and adapted to detect said radiation by scintillation and to transmit light produced by such detection. The array is formed by two groups of optical fibers. Each fiber is disposed along a respective straight line segment defining two orthogonal directions delimiting an analysis plane or surface. At least one of the groups is subdivided into two elementary groups spaced in a direction perpendicular to the analysis plane or surface. The fibers of the elementary groups are parallel.