摘要:
The present disclosure provides methods and compositions for enhanced delivery of siRNA or miRNA, into the interior of multilayered tissues, and into the cytoplasm or nucleus of cells of a tissue. Such methods and compositions yield tumor-selective and intracellular delivery of RNAi agents and allow for RNAi-mediated activity such as knock-down of the target genes and associated products. The current disclosure further provides methods and compositions for improving the intracellular bioavailability of nucleotide agents.
摘要:
The invention provides methods and compositions for modulating the activity of therapeutic agents for the treatment of a cancer by administering one or more agents that (either alone or in combination) induces telomere damage and inhibits telomerase activity in the cancer cell. The method initially uses, e.g., a telomere damage-inducing agent such as paclitaxel, and a telomerase inhibitory agent such as AZT. The invention also provides methods for identifying other agents with telomere damage-inducing activity and/or telomerase inhibitory activity (as well as and compositions having such activity), for use in the treatment of cancer.
摘要:
The invention provides methods and compositions for modulating the activity of therapeutic agents for the treatment of a cancer by administering one or more agents that (either alone or in combination) induces telomere damage and inhibits telomerase activity in the cancer cell. The method initially uses, e.g., a telomere damage-inducing agent such as paclitaxel, and a telomerase inhibitory agent such as AZT. The invention also provides methods for identifying other agents with telomere damage-inducing activity and/or telomerase inhibitory activity (as well as and compositions having such activity), for use in the treatment of cancer.
摘要:
A composition for delivering a tumor therapeutic agent to a patient includes a fast-release formulation of a tumor apoptosis inducing agent, a slow-release formulation of a tumor therapeutic agent, and a pharmaceutically acceptable carrier. An apoptosis-inducing agent in a pharmaceutically acceptable carrier may be administered before or concomitantly therewith. Nanoparticles or microparticles (e.g., cross-linked gelatin) of the therapeutic agent (e.g., paclitaxel) also may be used. The nanoparticles or microparticles may be coated with a bioadhesive coating. Microspheres that agglomerate to block the entrance of the lymphatic ducts of the bladder to retard clearance of the microparticles through the lymphatic system also may be employed. This invention also uses drug-loaded gelatin and poly(lactide-co-glycolide) (PLGA) nanoparticles and microparticles to target drug delivery to tumors in the peritoneal cavity, bladder tissues, and kidneys.
摘要:
A method for determining a therapeutically effective amount of suramin for administering to a patient, who is to receive a cytotoxic agent, which comprises the steps of determining the circulating suramin concentration in the patient; administering suramin, if required, to establish a low circulating concentration of suramin in the patient of below about 200 μM; and administering the chemotherapeutic agent to the patient when the low circulating concentration of suramin is present in the patient. Conveniently a nomogram can be constructed for use in clinical settings with the suramin.
摘要:
A method for determining a therapeutically effective amount of suramin for administering to a patient, who is to receive a cytotoxic agent, which comprises the steps of determining the circulating suramin concentration in the patient; administering suramin, if required, to establish a low circulating concentration of suramin in the patient of below about 200 μM; and administering the chemotherapeutic agent to the patient when the low circulating concentration of suramin is present in the patient. Conveniently a nomogram can be constructed for use in clinical settings with the suramin.
摘要:
The present disclosure provides methods and compositions for enhanced delivery of siRNA or miRNA, into the interior of multilayered tissues, and into the cytoplasm or nucleus of cells of a tissue. Such methods and compositions yield tumor-selective and intracellular delivery of RNAi agents and allow for RNAi-mediated activity such as knock-down of the target genes and associated products. The current disclosure further provides methods and compositions for improving the intracellular bioavailability of nucleotide agents.
摘要:
Methods and compositions for modulating the FGF effect on the sensitivity of malignant and normal cells to anticancer agents are provided. In particular, methods and compositions for inhibiting FGF-induced resistance to a broad spectrum of anticancer agents in solid and soft-tissue tumors, metastatic lesions, leukemia and lymphoma are provided. Preferably, the compositions include at least one FGF inhibitor in combination with a cytotoxic agents, e.g., antimicrotubule agents, topoisomerase I inhibitors, topoisomerase II inhibitors, antimetabolites, mitotic inhibitors, alkylating agents, intercalating agents, agents capable of interfering with a signal transduction pathway (e.g., g., a protein kinase C inhibitor, e.g., an anti-hormone, e.g., an antibody against growth factor receptors), an agent that promotes apoptosis and/or necrosis, an interferon, an interleukin, a tumor necrosis factor, and radiation.In other embodiments, methods and composition for protecting a cell in a subject, from one or more of killing, inhibition of growth or division or other damage caused, e.g., by a cytotoxic agent, are provided. Preferably, the method includes: administering, to the subject, an effective amount of at least one FGF agonist, thereby treating the cell, e.g., protecting or reducing the damage to the dividing cell from said cytotoxic agent.