Abstract:
The invention concerns sound spatialization with multichannel encoding for binaural reproduction on two loudspeakers, the spatial encoding being defined by encoding functions associated with multiple encoding channels and the decoding by applying filters for binaural reproduction. The invention provides for an optimization as follows: a) obtaining a original set of acoustic transfer functions particular to an individual's morphology (HRIR;HRTF), b) selecting spatial encoding functions (g(θ,φ,n)) and/or decoding filters (F(t,n)), and c) through successive iterations, optimizing the filters associated with the selected encoding functions or the encoding functions associated with the selected filters, or jointly the selected filters and encoding functions, by minimizing an error (c(HRIR,HRIR*)) calculated based on a comparison between: the original set of transfer functions (HRIR), and a set of reconstructed transfer functions (HRIR*) from encoding functions and decoding filters, whether optimized and/or selected.
Abstract:
The invention concerns a process for joint synthesis and spatialization of multiple sound sources in associated spatial positions, including: a) a step of assigning to each source at least one parameter (pi) representing an amplitude; b) a step of spatialization consisting in implementing an encoding into a plurality of channels, wherein each amplitude (pi) is duplicated to be multiplied to a specialization gain (gim), each spatialization gain being determined for one encoding channel (pgm) and for a source to be spatialized (Si); c) a step of grouping (R) the parameters multiplied by the gains (Pim), in respective channels (pg1, . . . , pgM), by applying a sum of said multiplied parameters (pim) on all the sources (Si) for each channel (pgm), and d) a step of parametric synthesis (SYNTH(I), . . . , SYNTH(M)) applied to each of the channels (pgm).
Abstract:
The invention concerns a process for joint synthesis and spatialization of multiple sound sources in associated spatial positions, including: a) a step of assigning to each source at least one parameter (pi) representing an amplitude; b) a step of spatialization consisting in implementing an encoding into a plurality of channels, wherein each amplitude (pi) is duplicated to be multiplied to a specialization gain (gim), each spatialization gain being determined for one encoding channel (pgm) and for a source to be spatialized (Si); c) a step of grouping (R) the parameters multiplied by the gains (Pim), in respective channels (pg1, . . . , pgM), by applying a sum of said multiplied parameters (pim) on all the sources (Si) for each channel (pgm), and d) a step of parametric synthesis (SYNTH(I), . . . , SYNTH(M)) applied to each of the channels (pgm).
Abstract:
The invention concerns a modular audio-visual system to bring together a local scene and a remote scene. The invention is characterized in that the system comprises: several concatenated audio-visual modules (M1, M2, M3), each module including an image sensing device and a sound pickup device for the local scene and, a device for restoring the image and the sound of the remote scene in an image plane (I), the modules being connected to a transmission network; automatic control and monitoring means (P) between the various modules to ensure continuity of the quality of the image and the sound on the image plane, when the people being filmed and recorded pass in front of the various image and sound pickup devices of the scene concerned.
Abstract:
Processing of sound data encoded in a sub-band domain, for dual-channel playback of binaural or Transaural® type is provided, in which a matrix filtering is applied so as to pass from a sound representation with N channels with N>0, to a dual-channel representation. This sound representation with N channels comprises considering N virtual loudspeakers surrounding the head of a listener, and, for each virtual loudspeaker of at least some of the loudspeakers: a first transfer function specific to an ipsilateral path from the loudspeaker to a first ear of the listener, facing the loudspeaker, and a second transfer function specific to a contralateral path from said loudspeaker to the second ear of the listener, masked from the loudspeaker by the listener's head. The matrix filtering comprises a multiplicative coefficient defined by the spectrum, in the sub-band domain, of the second transfer function deconvolved with the first transfer function.
Abstract:
Processing of sound data encoded in a sub-band domain, for dual-channel playback of binaural or transaural® type is provided, in which a matrix filtering is applied so as to pass from a sound representation with N channels with N>0, to a dual-channel representation. This sound representation with N channels comprises considering N virtual loudspeakers surrounding the head of a listener, and, for each virtual loudspeaker of at least some of the loudspeakers: a first transfer function specific to an ipsilateral path from the loudspeaker to a first ear of the listener, facing the loudspeaker, and a second transfer function specific to a contralateral path from said loudspeaker to the second ear of the listener, masked from the loudspeaker by the listener's head. The matrix filtering comprises a multiplicative coefficient defined by the spectrum, in the sub-band domain, of the second transfer function deconvolved with the first transfer function.
Abstract:
The invention concerns sound spatialization with multichannel encoding for binaural reproduction on two loudspeakers, the spatial encoding being defined by encoding functions associated with multiple encoding channels and the decoding by applying filters for binaural reproduction. The invention provides for an optimization as follows: a) obtaining a original set of acoustic transfer functions particular to an individual's morphology (HRIR;HRTF), b) selecting spatial encoding functions (g(θ,φ,n)) and/or decoding filters (F(t,n)), and c) through successive iterations, optimizing the filters associated with the selected encoding functions or the encoding functions associated with the selected filters, or jointly the selected filters and encoding functions, by minimizing an error (c(HRIR,HRIR*)) calculated based on a comparison between: the original set of transfer functions (HRIR), and a set of reconstructed transfer functions (HRIR*) from encoding functions and decoding filters, whether optimized and/or selected.
Abstract:
A method of comparison between pieces of information characterizing reference values and pieces of information characterizing current values of sound-reproducing systems of a system of (n) microphones mi and (p) speakers hpj for the control of said sound-reproducing systems characterized in that: A: for each speaker hpj, at least one sound signal S is sent on the speaker hpj, for each microphone mi, a piece of information hpjmi is retrieved, this piece of information characterizing the sound-reproducing system comprising the speaker hpj and the microphone mi, B: a reference matrix Qr is saved, this reference matrix being constituted by all the pieces of reference information hpjmi obtained following the sending of the sound signal S, C: as soon as a comparison is to be made, the step A is run with a sound signal S′ to obtain current information on a matrix Q, D: the matrices Q and Qr are compared.
Abstract translation:一种用于表征参考值的信息和表征(n)个麦克风系统的声音再现系统的当前值的信息的信息的方法,(p)扬声器hp< j> 用于所述声音再现系统的控制,其特征在于:A:对于每个扬声器,在扬声器hp上发送至少一个声音信号S, SUB>,对于每个麦克风m 1,检索一条信息,其中表示声音再现的这条信息 系统包括扬声器hp和麦克风m,B:参考矩阵Q SUB R i被保存,该参考矩阵由全部 在发送声音信号S,C之后获得的参考信息片段:一旦进行比较,则步骤A被运行 具有声音信号S'以获得矩阵上的当前信息 Q,D:比较矩阵Q和Q SUB>。
Abstract:
The invention relates to the synthesis and the joint spatialization of sounds emitted by virtual sources. According to the invention, a step (ETA) is provided that consists of determining parameters including at least one gain (gi) for defining, at the same time, a loudness characterizing the nature of the virtual source and the position of the source relative to a predetermined origin.
Abstract:
The invention relates to the treatment of sound data for spatialized restitution of acoustic signals. At least one first and one second series of weighting terms are obtained for each acoustic signal, said terms representing a direction of perception of said acoustic signal by a listener. The acoustic signals are then applied to at least two sets of filtering units, which are disposed in parallel, in order to provide at least one first and one second output signal (L,R), corresponding to a linear combination of signals provided by said filtering units, which are respectively weighted by the weighting terms of the first and second series. According to the invention, each acoustic signal to be treated is at least partially compression coded and is expressed in the form of a vector of sub-signals associated with respective frequency sub-bands. Matrix filtering applied to each vector is carried out by each filtering unit in the space of the frequential sub-bands.