摘要:
A system for path compensation of multiple incoherent optical beams incorporates an optical element combining a plurality of incoherent beams to an aperture by angle using carrier frequency tilt fringes. An illumination laser is employed for reflection of an illumination beam from a target. An interferometer receives a sample of the reflected illumination beam reflected from the target and provides interference fringes. A spatial light modulator receives the interference fringes and generates a real time hologram. Relay optics are employed for transmitting the combined plurality of incoherent beams to the SLM and receiving a diffraction corrected full aperture compensated combined beam for emission to the far field.
摘要:
A system for path compensation of multiple incoherent spectral optical beams incorporates an optical element combining a plurality of incoherent spectral beams to an aperture by angle using carrier frequency tilt fringes. An illumination laser is employed for reflection of an illumination beam from a target. An interferometer receives a sample of the reflected illumination beam reflected from the target and provides interference fringes. A spatial light modulator receives the interference fringes and generates a real time hologram. Relay optics are employed for transmitting the combined plurality of incoherent beams to the SLM and receiving a diffraction corrected full aperture compensated combined beam for emission to the far field.
摘要:
Blazing of real time holographic fringes employs an interferometer with a focal plane array (FPA) to receive interference fringes. An FPA frame is read into a fringe processor. For each row, minima are identified and a pixel value is saved and its position in the row recorded. The minima determination is repeated for each column in the row until all pixels in the row have been recorded. A blazed fringe for the single row is then created. The blazed fringe row is then transferred to a spatial light modulator (SLM). The minima determination and fringe blazing processes are repeated until all rows in the FPA array are read and transferred to the SLM. The next FPA frame is then read into the fringe processor.
摘要:
A system for path compensation of multiple incoherent optical beams incorporates an optical element combining a plurality of incoherent beams to an aperture by angle using carrier frequency tilt fringes. An illumination laser is employed for reflection of an illumination beam from a target. An interferometer receives a sample of the reflected illumination beam reflected from the target and provides interference fringes. A spatial light modulator receives the interference fringes and generates a real time hologram. Relay optics are employed for transmitting the combined plurality of incoherent beams to the SLM and receiving a diffraction corrected full aperture compensated combined beam for emission to the far field.