摘要:
Described is a device (e.g., a cell phone incorporating a digital camera) that incorporates a graphics processing unit (GPU) to process image data in order to increase the quality of a rendered image. The processing power provided by a GPU means that, for example, an unacceptable pixel value (e.g., a pixel value associated with a malfunctioning or dead detector element) can be identified and replaced with a new value that is determined by averaging other pixel values. Also, for example, the device can be calibrated against benchmark data to generate correction factors for each detector element. The correction factors can be applied to the image data on a per-pixel basis. If the device is also adapted to record and/or play digital audio files, the audio performance of the device can be calibrated to determine correction factors for a range of audio frequencies.
摘要:
A method and system for application development. Specifically, a generic console interface is provided that is capable of interacting with graphics applications. The console interface is capable of accessing a graphics application by detouring at least one predefined system call made by the graphics application. User input is intercepted that is related to the predefined system call that is detoured. The user input is communicated through the console interface. An operation is performed as implemented by the user input through a dynamically loadable module.
摘要:
Described is a device (e.g., a cell phone incorporating a digital camera) that incorporates a graphics processing unit (GPU) to process image data in order to increase the quality of a rendered image. The processing power provided by a GPU means that, for example, an unacceptable pixel value (e.g., a pixel value associated with a malfunctioning or dead detector element) can be identified and replaced with a new value that is determined by averaging other pixel values. Also, for example, the device can be calibrated against benchmark data to generate correction factors for each detector element. The correction factors can be applied to the image data on a per-pixel basis. If the device is also adapted to record and/or play digital audio files, the audio performance of the device can be calibrated to determine correction factors for a range of audio frequencies.
摘要:
A system and method are provided for creating a vector map in a hardware graphic pipeline. Initially, one of a plurality of transforms is selected in a hardware graphic pipeline. Further, input is processed in order to generate a vector map utilizing the selected transform in the hardware graphics pipeline. Subsequently, a plurality of pixel color values is rendered utilizing the vector map.
摘要:
Described is a device (e.g., a cell phone incorporating a digital camera) that incorporates a graphics processing unit (GPU) to process image data in order to increase the quality of a rendered image. The processing power provided by a GPU means that, for example, an unacceptable pixel value (e.g., a pixel value associated with a malfunctioning or dead detector element) can be identified and replaced with a new value that is determined by averaging other pixel values. Also, for example, the device can be calibrated against benchmark data to generate correction factors for each detector element. The correction factors can be applied to the image data on a per-pixel basis. If the device is also adapted to record and/or play digital audio files, the audio performance of the device can be calibrated to determine correction factors for a range of audio frequencies.
摘要:
A graphics processor performs culling of invisible primitives in a vertex processing unit that includes a geometry shader or other processing engine that performs per-primitive operations. Primitives can be culled after clip space coordinates for the vertices have been computed and in some instances before at least one other vertex attribute has been computed. To the extent that this early culling reduces the number of vertices for which the full set of attributes is computed or reduces the number of primitives or vertices delivered to downstream units, throughput of the processor is increased.
摘要:
Described is a device (e.g., a cell phone incorporating a digital camera) that incorporates a graphics processing unit (GPU) to process image data in order to increase the quality of a rendered image. The processing power provided by a GPU means that, for example, an unacceptable pixel value (e.g., a pixel value associated with a malfunctioning or dead detector element) can be identified and replaced with a new value that is determined by averaging other pixel values. Also, for example, the device can be calibrated against benchmark data to generate correction factors for each detector element. The correction factors can be applied to the image data on a per-pixel basis. If the device is also adapted to record and/or play digital audio files, the audio performance of the device can be calibrated to determine correction factors for a range of audio frequencies.
摘要:
A method, in accordance with an embodiment of the invention, includes detecting a memory page miss associated with a thread operating on a Graphics Processing Unit (GPU). A request can be issued to receive the memory page associated with the memory page miss. There can be a switch into a runahead mode. During the runahead mode, a future memory page miss can be detected. During the runahead mode, a request can be issued to receive the future memory page associated with the future memory page miss.
摘要:
Described is a device (e.g., a cell phone incorporating a digital camera) that incorporates a graphics processing unit (GPU) to process image data in order to increase the quality of a rendered image. The processing power provided by a GPU means that, for example, an unacceptable pixel value (e.g., a pixel value associated with a malfunctioning or dead detector element) can be identified and replaced with a new value that is determined by averaging other pixel values. Also, for example, the device can be calibrated against benchmark data to generate correction factors for each detector element. The correction factors can be applied to the image data on a per-pixel basis. If the device is also adapted to record and/or play digital audio files, the audio performance of the device can be calibrated to determine correction factors for a range of audio frequencies.
摘要:
Described is a device (e.g., a cell phone incorporating a digital camera) that incorporates a graphics processing unit (GPU) to process image data in order to increase the quality of a rendered image. The processing power provided by a GPU means that, for example, an unacceptable pixel value (e.g., a pixel value associated with a malfunctioning or dead detector element) can be identified and replaced with a new value that is determined by averaging other pixel values. Also, for example, the device can be calibrated against benchmark data to generate correction factors for each detector element. The correction factors can be applied to the image data on a per-pixel basis. If the device is also adapted to record and/or play digital audio files, the audio performance of the device can be calibrated to determine correction factors for a range of audio frequencies.