摘要:
An electrical connector terminal includes a planar wire connecting portion formed to connect with an outside wire lead, the connecting portion defining a first plane. A shoulder portion of the terminal has a planar first section extending from a first side of the connecting portion, and the first section defines a second plane that is normal to the first plane of the connecting portion so that the terminal is held stable when mounted on a wiring board and the first section of the shoulder portion is restrained by an outside part located out of the first plane of the wire connecting portion. An elongated mounting portion or tail is formed to fit axially in a terminal opening in the wiring board. The tail is joined to a free end of the first section of the shoulder portion remote from the wire connecting portion, and the second plane of the first section includes the axis of the mounting portion.
摘要:
An insulation displacement connecting (IDC) terminal that accepts two insulated wires in a single slot for the making of an electrical connection. The IDC portion of the terminal, which cuts into the insulation of the wire to establish contact, is designed with large flat spring contacts about a centrally located slot, wherein the contacts displace torsionally when normal forces placed on the terminals exceed a fixed load. The torsional displacement is enabled by the inclusion of a widened slot proximate a base portion of the terminal. The widened slot in combination with an angular orientation of the terminal contained within an insulated connector module housing enables the contacts to twist to away from one another. This displacement effect allows for larger gauge and more than one conductor to be inserted into the terminal without permanently yielding the beam contacts of the terminal. The widened slot included at the base of the terminal also allows for removal of a first wire without disturbing the connection of a second wire. The terminals are adapted for use with connector modules which house multiple pairs of IDC terminals on both the front and rear sides thereof. The connector modules are insertable into a hinged mounting bracket that is mounted at a telephone switching area to make up a modular connecting block.
摘要:
A telecommunications patching system includes a patch panel having a plurality of connector ports, and having an RFID reader and RF antennas associated with the connector ports. A plurality of patch cords are configured to selectively interconnect pairs of the connector ports. Each patch cord has opposite ends and a respective connector secured to each end that is configured to be removably secured within a connector port. Each connector of a respective patch cord includes an RFID tag. The RFID tags for a respective patch cord have the same unique identifier stored therewithin. The RF antenna associated with a connector port emits RF signals that cause a patch cord connector RFID tag to transmit its identifier. Each RF antenna detects the transmitted identifier of a patch cord connector RFID tag when the respective patch cord connector is inserted within, and removed from, a respective one of the connector ports.
摘要:
The present invention is a flexible plastic membrane which supports embedded components such as light emitting diodes and plastic pressure switches, and conductors on a plastic ribbon which connects the embedded light emitting diode and plastic pressure switch to a connector. The flexible plastic membrane supports an adhesive which enables it to be stick to the surface of the module face plate. The inventive structure is more economical to build and install than presently used mechanical spring loaded push switches and light emitting diodes as they must be physically mounted to the face plate and hardwired when the module is manufactured. In addition, the inventive structure can be replaced in the field when a fault develops without disturbing or disconnecting the optical fiber connected to the front or rear of a module.
摘要:
A wiring block mounting bracket for mounting a conductor termination array and wiring block on an industry standard 19 inch Terminal Frame System. For telecommunications and data management systems, the wiring block mount allows the mounting of one to four termination arrays only, without the need for a back panel.
摘要:
Disclosed is a high density connector for providing electrical connection between a circuit pack and backplane. The connector is formed from at least two modules, each coupled to a different surface of the circuit board and having a different array of connection types.
摘要:
A plurality of optical fibers (14-14E) are interconnected by using connectors each comprising an optoelectronic device (13-13E) adapted to be connected to an end of each optical fiber for converting optical signals to electrical signals and for converting electrical signals to optical signals. Each connector has a first contact (12-12E) having a cylindrical plug end and a cylindrical socket end located on a common axis and a transverse conductor (21) extending transversely to the axis (20) from the first contact and connected to the optoelectronic device of the connector. The plug end of each contact is adapted to fit snugly within the socket end of another first contact, whereby all of the contacts may be connected and arranged along the common axis. Each of the contacts is free to rotate with respect to other contacts to which it is connected; this permits the various optical fibers to extend in different radial directions from the axis. In a preferred embodiment, each connector further comprises second (23) and third (24) hollow cylindrical contacts surrounding the first contact (22). Hollow cylindrical insulators ( 26, 27) separate and insulate the first, second and third contacts, and appropriate slots permit transverse conductors (29, 31, 32) of the contacts to be connected to the optoelectronic devices (41). In this manner, each connector interconnects electrical ground and power lines, as well as the optical signal lines of the various optical fiber cables (40).
摘要:
Methods for collecting information regarding a remote connector port that is connected to a patch panel connector port by a communications cable that has at least one data communications channel and a separate control channel are provided in which a first conductor of the separate control channel of the communications cable is biased to power an integrated circuit chip that is associated with the remote connector port. A first signal is transmitted over the separate control channel of the communications cable to the integrated circuit chip associated with the remote connector port. A second signal is received from the integrated circuit chip over the separate control channel of the communications cable in response to the first signal. The second signal includes information regarding the remote connector port.
摘要:
A telecommunications patching system includes a patch panel comprising a plurality of connector ports and a plurality of patch cords configured to selectively interconnect pairs of the connector ports. Each patch cord has opposite ends and a respective connector secured to each end that is configured to be removably secured within a connector port. The connectors of a respective patch cord have the same unique identifier associated therewith. A first sensor is located at each connector port and detects when a patch cord connector is inserted within, and removed from, a respective connector port. A second sensor is located at each connector port and reads the identifier of a patch cord connector inserted within a respective connector port. The first and second sensors are in communication with a controller that monitors and logs patch cord interconnections with the connector ports.
摘要:
A telecommunications patching system includes a patch panel comprising a plurality of connector ports and a plurality of patch cords configured to selectively interconnect pairs of the connector ports. Each patch cord has opposite ends and a respective connector secured to each end that is configured to be removably secured within a connector port. The connectors of a respective patch cord have the same unique identifier associated therewith. A first sensor is located at each connector port and detects when a patch cord connector is inserted within, and removed from, a respective connector port. A second sensor is located at each connector port and reads the identifier of a patch cord connector inserted within a respective connector port. The first and second sensors are in communication with a controller that monitors and logs patch cord interconnections with the connector ports.