Abstract:
A method for determining at least one of an effluent concentration profile, a breakthrough time and a filter cartridge recommendation includes receiving at least one input parameter, determining at least one of the effluent concentration profile, the breakthrough time and the filter cartridge recommendation based on the input parameter, and graphically displaying at least one of the effluent concentration profile, the breakthrough time, and the filter cartridge recommendation. The effluent concentration profile includes a plot of a concentration of a chemical species over a period of time. The breakthrough time includes a time at which a predetermined concentration of the chemical species passes through a filter cartridge.
Abstract:
A method for determining a service life for a filter includes measuring exposure data and calculating a service life estimate based on the exposure data. The service life estimate is representative of an estimated exposure time that the filter is exposed to ambient conditions represented by the exposure data before the contaminant passes through the filter at a breakthrough concentration. The method also includes obtaining environmental data and establishing a predicted service life based on the environmental data. The predicted service life is representative of a predicted exposure time that the filter is exposed to the ambient conditions represented by the environmental data before the contaminant passes through the filter at the breakthrough concentration. The method further includes determining the service life for the filter based on a comparison of the estimated and predicted service lives.
Abstract:
A filter mask includes an oronasal cup, an inhalation directional cover, and an exhalation diverter body. The oronasal cup encloses a nose and mouth of a user. The oronasal cup is fluidly coupled with a filter. The inhalation directional cover is configured to be joined to the filter. The inhalation directional cover includes an elongated wing portion that is oriented in an inhalation direction that is angled with respect to the center axis of the filter. The exhalation diverter body is fluidly coupled with the oronasal cup. The exhalation diverter body defines an exhalation duct that directs exhaled air out of the oronasal cup along an exhalation direction. The inhalation direction and the exhalation direction are oriented away from a plane of interaction between the user and another person.
Abstract:
A method for determining a service life for a filter includes measuring exposure data and calculating a service life estimate based on the exposure data. The service life estimate is representative of an estimated exposure time that the filter is exposed to ambient conditions represented by the exposure data before the contaminant passes through the filter at a breakthrough concentration. The method also includes obtaining environmental data and establishing a predicted service life based on the environmental data. The predicted service life is representative of a predicted exposure time that the filter is exposed to the ambient conditions represented by the environmental data before the contaminant passes through the filter at the breakthrough concentration. The method further includes determining the service life for the filter based on a comparison of the estimated and predicted service lives.
Abstract:
A filter mask includes an oronasal cup, an inhalation directional cover, and an exhalation diverter body. The oronasal cup encloses a nose and mouth of a user. The oronasal cup is fluidly coupled with a filter. The inhalation directional cover is configured to be joined to the filter. The inhalation directional cover includes an elongated wing portion that is oriented in an inhalation direction that is angled with respect to the center axis of the filter. The exhalation diverter body is fluidly coupled with the oronasal cup. The exhalation diverter body defines an exhalation duct that directs exhaled air out of the oronasal cup along an exhalation direction. The inhalation direction and the exhalation direction are oriented away from a plane of interaction between the user and another person.
Abstract:
A method for determining at least one of an effluent concentration profile, a breakthrough time and a filter cartridge recommendation includes receiving at least one input parameter, determining at least one of the effluent concentration profile, the breakthrough time and the filter cartridge recommendation based on the input parameter, and graphically displaying at least one of the effluent concentration profile, the breakthrough time, and the filter cartridge recommendation. The effluent concentration profile includes a plot of a concentration of a chemical species over a period of time. The breakthrough time includes a time at which a predetermined concentration of the chemical species passes through a filter cartridge.