Abstract:
A lamp driving circuit includes a first printed circuit board and a second printed circuit board. The first printed circuit board includes a switching unit for switching an input power source, a control unit for controlling the switching unit, an inverter transformer connected to the switching unit, and a voltage conversion unit for converting a feedback reference current for controlling an output current applied from the inverter transformer into a reference voltage and applying the reference voltage to the control unit. The voltage conversion unit is connected to the inverter transformer and the control unit. The voltage conversion unit is connected to a first feedback terminal. The second printed circuit board includes a plurality of balance coils connected to a plurality of lamps so that the same output currents are applied to the lamps, a second feedback terminal connected to the first feedback terminal, and a current conversion unit connected to the second feedback terminal.
Abstract:
A method of recognizing a user's dynamic organ for use in an electric-using apparatus includes scanning a target image inputted through an imaging element using a window; generating a HOG descriptor of a region of the target image that is scanned when it is judged that the scanned region includes a dynamic organ; measuring a resemblance value between the HOG descriptor of the scanned region and a HOG descriptor of a query template for a gesture of the dynamic organ; and judging that the scanned region includes the gesture of the dynamic organ when the resemblance value meets a predetermined condition.
Abstract:
The present invention provides a cell or stack for evaluating the performance of a fuel cell and a method of evaluating the performance of the fuel cell using the cell or stack, in which a semiconductor thermoelectric device, attached to the side surface of the unit cell or stack of the fuel cell, is provided maintain the cell or stack at a uniform temperature. The temperatures of an anode and a cathode of the fuel cell can be precisely changed or maintained such that the performance of the fuel cell can also be measured in sub-zero temperature conditions without requiring a separate environmental chamber. A rate of temperature decrease, at which the temperature decreases to a certain sub-zero temperature, or a rate of temperature increase can be precisely controlled.
Abstract:
Disclosed is an integrated multi-measurement system for measuring physical properties including thickness, electrical resistance and differential pressure of a gas diffusion layer for a polymer electrolyte fuel cell with respect to compression. The integrated multi-measurement system simultaneously measures changes in the physical properties of the gas diffusion layer depending on pressure upon measurement of the physical properties of the gas diffusion layer of the fuel cell and also measures through-plane permeability in which a gas is passed through a sample in a direction perpendicular to the sample and in-plane permeability in which a gas is passed through a sample in a direction parallel to the sample.
Abstract:
A highly proton conductive polymer electrolyte composite membrane for a fuel cell is provided. The composite membrane includes crosslinked polyvinylsulfonic acid. The composite membrane is produced by impregnating a mixed solution of vinylsulfonic acid as a monomer, a hydroxyl group-containing bisacrylamide as a crosslinking agent and a photoinitiator or thermal initiator into a microporous polymer support, polymerizing the monomer, and simultaneously thermal-crosslinking or photo-crosslinking the polymer to form a chemically crosslinked polymer electrolyte membrane which is also physically crosslinked with the porous support. Further provided is a method for producing the composite membrane in a simple manner at low cost as well as a fuel cell using the composite membrane.
Abstract:
A highly proton conductive polymer electrolyte composite membrane for a fuel cell is provided. The composite membrane includes crosslinked polyvinylsulfonic acid. The composite membrane is produced by impregnating a mixed solution of vinylsulfonic acid as a monomer, a hydroxyl group-containing bisacrylamide as a crosslinking agent and a photoinitiator or thermal initiator into a microporous polymer support, polymerizing the monomer, and simultaneously thermal-crosslinking or photo-crosslinking the polymer to form a chemically crosslinked polymer electrolyte membrane which is also physically crosslinked with the porous support. Further provided is a method for producing the composite membrane in a simple manner at low cost as well as a fuel cell using the composite membrane.
Abstract:
The present invention provides a lamp driving circuit including a first printed circuit board and a second printed circuit board, wherein the first printed circuit board includes a switching unit for switching an input power source; a control unit for controlling the switching unit; an inverter transformer connected to the switching unit; and a voltage conversion unit for converting a feedback reference current for controlling an output current applied from the inverter transformer into a reference voltage to apply the reference voltage to the control unit by being connected to the inverter transformer, the voltage conversion unit is connected to a first feedback terminal, and the second printed circuit board includes a plurality of balance coils connected to a plurality of lamps so that the same output currents are applied to the lamps; and a current conversion unit connected to a second feedback terminal.
Abstract:
The present invention provides a cell or stack for evaluating the performance of a fuel cell and a method of evaluating the performance of the fuel cell using the cell or stack, in which a semiconductor thermoelectric device, attached to the side surface of the unit cell or stack of the fuel cell, is provided so as to evaluate the performance of the fuel cell in an environment in which temperature is maintained at a uniform temperature.According to the present invention, the temperatures of an anode and a cathode of the fuel cell can be precisely changed or maintained. Further, the performance of the fuel cell can also be measured in sub-zero temperature conditions without requiring a separate environmental chamber. A rate of temperature decrease, at which the temperature decreases to a certain sub-zero temperature, or a rate of temperature increase can be precisely controlled. Therefore, the evaluation of the performance of the fuel cell can be easily and precisely achieved in an environmental temperature in which the operation of the fuel cell is required.
Abstract:
A method of recognizing a user's dynamic organ for use in an electric-using apparatus includes scanning a target image inputted through an imaging element using a window; generating a HOG descriptor of a region of the target image that is scanned when it is judged that the scanned region includes a dynamic organ; measuring a resemblance value between the HOG descriptor of the scanned region and a HOG descriptor of a query template for a gesture of the dynamic organ; and judging that the scanned region includes the gesture of the dynamic organ when the resemblance value meets a predetermined condition.
Abstract:
A search service providing method and a display apparatus applying the same are provided. In response to a user selecting a particular item of search result items displayed in a second region, the search service providing method displays the selected search result item in a third region so that the user can display and temporary store his/her intended search result in a separate region. Thus, the user can select and access the temporarily stored search result items displayed in the third region, without having to search previous sites repeatedly.