Abstract:
A method of resource allocation among mobile stations in distributed communication network enables a mobile station to perceive existence of another mobile station through a time slot for resource allocation without having to communicate with a sensor node. If perceiving another mobile station, the mobile station allocates time slot resources not to overlap with the time slot resources of another mobile station, and performs location measurement or media access and reception of service from the sensor node through the allocated time slot resources. Because the mobile stations of the network can perceive each other by communicating with each other, and accordingly allocate their own resources without overlapping with the resource of the others, frequent collision of the signal for location measurement can be prevented.
Abstract:
A global positioning system using Bluetooth technology, including: a first Bluetooth master that receives satellite orbit information; a Bluetooth slave that communicates with the first Bluetooth master in a Bluetooth protocol; and a second Bluetooth master that transmits an inquiry code for communication with the Bluetooth slave in the Bluetooth protocol. The second Bluetooth master provides positioning information by requesting the satellite orbit information from the first Bluetooth master through the Bluetooth slave and transmitting the satellite orbit information to the second Bluetooth master through the Bluetooth slave.
Abstract:
A beacon scheduling method and system in a network system. The beacon scheduling method of a router in a network system that includes at least one router, includes receiving a beacon signal from a parent node; calculating a difference between an address of the parent node and an address of the router; and setting the calculated difference to a beacon transmission offset of the router. Accordingly, all devices from the top to the bottom of the network can transmit their beacons without collisions, and thus the multi-hop tree structure can be established.
Abstract:
There is provided a node position measurement apparatus and method including sequentially transmitting measurement impulses corresponding to a plurality of base stations, respectively, to at least one node; receiving time offset information that is a difference in time of receiving the measurement impulses, from the node receiving the measurement impulses; and measuring a position of the node based on the time offset information.
Abstract:
A time synchronization method in a wireless sensor network, has an upper node that provides back-off scheduling to lower nodes in the wireless sensor network of a hierarchical structure. Each of the lower nodes synchronizes time according to the back-off scheduling based on its local clock. The time synchronous method also allows the number of packets required for synchronization in the wireless sensor network to sharply decrease, and the life time of the network to increase. Additionally, the time synchronous method provides a response packet from a lower node in response to a synchronization packet from an upper node, which is used as a synchronization start packet for secondary lower nodes, so that synchronization in the entire network is rapidly processed.
Abstract:
A control packet management device of a packet forwarding system has a packet queue having a plurality of queues to store a control packet as transmitted, a first processor to transmit said control packet stored in one queue of said plurality of queues to a host a by one-to-one interrupt, a second processor to divide said control packets stored in said one queue into groups of a predetermined size and transmit said control packets to said host in the group unit and by direct memory access (DMA), a third processor to discard a most common type of said control packets stored in said one queue, and a controller to control said first, second and third processors to selectively operate in accordance with an accumulation state of said control packets stored in said plurality of queues.
Abstract:
Provided is a method for refining node position information in a wireless sensor network having an ultra wideband communication network and a wireless personal area network where the initial positions of respective nodes are set, by utilizing nodes at a 2-hop distance, or more than a 2-hop distance when the number of neighboring nodes at a 1-hop distance is not sufficient to perform triangulation, and to refine the position of nodes based on a distance measured between the respective nodes. Because the initial position is refined and confirmed in a wireless sensor network, a user node operates as a pseudo anchor node for the nodes which have no anchor node nearby. Furthermore, as a node has the refined position, it can act as a pseudo anchor node and be used to compute the position of the other nodes. Additionally, positions of nodes of the wireless sensor network can be estimated with more accuracy.
Abstract:
A method for flooding a route request packet that is received at a node in a communication system constructed of at least three nodes including a source node that requests to establish a route and a destination node that receives the route request. One of a plurality of levels having different transmission periods is determined using a strength of a received signal of a measured packet. A transmission start point is selected at the determined level, and it is determined whether a route request packet is re-received before the selected transmission start point. The received packet is broadcast at the selected transmission start point when the packet is not re-received. The transmission start point is randomly selected within the transmission period or at the level in consideration of the number of the connected nodes.
Abstract:
A method of resource allocation among mobile stations in distributed communication network enables a mobile station to perceive existence of another mobile station through a time slot for resource allocation without having to communicate with a sensor node. If perceiving another mobile station, the mobile station allocates time slot resources not to overlap with the time slot resources of another mobile station, and performs location measurement or media access and reception of service from the sensor node through the allocated time slot resources. Because the mobile stations of the network can perceive each other by communicating with each other, and accordingly allocate their own resources without overlapping with the resource of the others, frequent collision of the signal for location measurement can be prevented.
Abstract:
A location recognition system and method using stereophonic sound, the system having a transmitter and a receiver. The transmitter uses the stereophonic sound and transmits location tracking information of an object. The transmitter includes a sound detector which detects a sound of the object and converts the detected sound to an electrical signal; a data converter which converts the electrical signal converted by the sound detector, to acoustic data; and a first communication interface which transmits the acoustic data converted by the data converter and the location tracking information to the receiver. A user can immediately recognize the location of the transmitter which transmits the location tracking information and is the target of the location tracking. Therefore, the mutual communications between the transmitter and the receiver which receives the location tracking information can be smoothly carried out.