Abstract:
An inverting flip-flop (F/F) circuit type monostable-bistable transition logic element (MOBILE) circuit that uses resonant tunneling diodes (RTDs) and can prevent a malfunction caused by low peak-to-valley current ratio (PVCR) characteristics of the RTD includes an input data conversion circuit and an inverting F/F circuit. The input data conversion circuit receives input data and converts a logic level of the input data according to a logic level of output data of the MOBILE circuit. The inverting F/F circuit inverts a logic level of data output from the input data conversion circuit and outputs the output data. Accordingly, even when a logic level of input data changes from LOW to HIGH, the logic level of output data can be maintained HIGH in the inverting F/F type MOBILE circuit constructed using silicon semiconductor based RTDs with a small PVCR. Therefore, it is possible to enhance the performance of the inverting F/F circuit type MOBILE circuit.
Abstract:
When InP DHBTs are located in parallel to a crystallographical direction of , there are several advantages in the aspect of device property such as reliability. But, in case of a direction parallel to a general , there exists the limitation in reducing base-collector parasitic capacitance only by collector over-etching technique due to poor lateral-etching characteristic of the InP collector. To overcome such a problem mentioned above and improve device performance, the present invention provides a method of reducing parasitic capacitance using underneath crystallographically selective wet etching, thereby providing a self-alignable, structurally stable device.