摘要:
A cascade cold dynamic cycle refrigeration apparatus makes up cold energy with a cryogenic liquid refrigerant by boosting with a dual-stage liquid circulating pump. The temperature of the refrigerant is increased via the cold regenerator before it enters the cold consuming apparatus to provide cold and becomes a gaseous refrigerant. The gaseous refrigerant then flows through the expander to expand and generates work by reducing pressure and temperature. The gaseous refrigerant is condensed and returns to the refrigerant tank via the cold regenerator or/and a throttle valve.
摘要:
This invention is about a cold dynamic cycle refrigeration apparatus, which makes up cold energy with cryogenic liquid refrigerant by liquid circulating pump boosting, after its temperature is increased via the cold regenerator, it enters the cold consuming apparatus to provide cold and becomes a gaseous refrigerant, then it flows through the expander to expand and make work by reducing pressure and temperature, and then returns to the refrigerant tank via the cold regenerator or/and throttle valve. This invention requires no circulation cooling water system as in a traditional steam compression refrigeration apparatus, so its maintenance and operation cost can be substantially reduced, with an apparatus of the same refrigerating capacity, it can save energy by more than 30% as compared with traditional ones, producing substantial economic, social and environmental protection benefits.
摘要:
This invention is about a natural gas isobaric liquefaction apparatus, which is based on the Rankine cycle system of similar thermal energy power circulation apparatus at cryogenic side, a cryogenic liquid pump is used to input power and the refrigerating media makes up cold to the natural gas liquefying apparatus, so as to realize the isobaric liquefaction of natural gas. The natural gas liquefying apparatus of this invention can save energy by over 30% as compared with the traditional advanced apparatus with the identical refrigerating capacity, therefore it constitutes a breakthrough to the traditional natural gas liquefaction technology, with substantial economic, social and environmental protection benefits.
摘要:
This invention is about a natural gas isobaric liquefaction apparatus, which is based on the Rankine cycle system of similar thermal energy power circulation apparatus at cryogenic side, a cryogenic liquid pump is used to input power and the refrigerant makes up cold to the natural gas liquefying apparatus, so as to realize the isobaric liquefaction of natural gas. The natural gas liquefying apparatus of this invention can save energy by over 30% as compared with the traditional advanced apparatus with the identical refrigerating capacity, therefore it constitutes a breakthrough to the traditional natural gas liquefaction technology, with substantial economic, social and environmental protection benefits.
摘要:
This invention is about an air separation apparatus to produce oxygen and nitrogen through isobaric separation, which is based on the Rankine cycle system of similar thermal energy power circulation apparatus at cryogenic side, a liquid pump is used to input work and the cold is made up to the air separation apparatus with refrigerating media, so as to realize the isobaric separation of air to produce nitrogen and oxygen. The air separation apparatus of this invention can save energy by over 30% as compared with the traditional advanced apparatus with the identical refrigerating capacity, and it can also realize centralize gas supply via the air separation apparatus, therefore it constitutes a breakthrough to the traditional air separation technology and refrigeration theory, with substantial economic, social and environmental protection benefits.
摘要:
The present invention is comprised of a heat supply circulation circuit: the liquid refrigerant from the refrigerant tank, after being boosted by the cryogenic liquid pump, enters the condensing evaporator, to transfer the cold to the backflow refrigerant at a higher temperature, after increasing pressure and temperature via the compressor, it is sent to the user system to supply heat, the refrigerant gas from the user system enters the condensing evaporator, and returns via the throttle valve to the refrigerant tank; and a cold supply circulation circuit: the liquid refrigerant from the refrigerant tank, after boosting by the cryogenic liquid pump, enters the condensing evaporator, to transfer the cold to the backflow refrigerant in the cold recovery channel, the refrigerant, after releasing the cold energy with increased temperature, flows to the user system to supply cold, the refrigerant gas from the user system returns via the compressor, condensing evaporator, and throttle valve to the refrigerant tank.
摘要:
An air conditioning apparatus includes a refrigerant tank, a cryogenic liquid pump, a condensing evaporator, a compressor, a user system, a throttle valve, a first reversing valve, and a second reversing valve. It operates in two modes. In the first mode, the refrigerant in the refrigerant tank flows sequentially from the refrigerant tank, the cryogenic liquid pump, the condensing evaporator, the first reversing valve, the compressor, the second reversing valve, the user system, the first reversing valve, the second reversing valve, the condensing evaporator, the throttle valve, and back to the refrigerant tank. In the second mode, refrigerant in the refrigerant tank flows sequentially from the refrigerant tank, the cryogenic liquid pump, the condensing evaporator, the first reversing valve, the second reversing valve, the user system, the first reversing valve, the compressor, the second reversing valve, the condensing evaporator, the throttle valve, and back to the refrigerant tank.
摘要:
This invention is about a cold dynamic cycle refrigeration apparatus, which makes up cold energy with cryogenic liquid refrigerant by liquid circulating pump boosting, after its temperature is increased via the cold regenerator, it flows through the expander to reduce pressure and temperature to provide the cold to the refrigeration apparatus, and then returns to the refrigerant tank via the cold regenerator, so as to form the cold dynamic cycle circuit of the refrigerant. This invention requires no circulation cooling water system as in a traditional steam compression refrigeration apparatus, so its maintenance and operation cost can be substantially reduced, with an apparatus of the same refrigerating capacity, it can save energy by more than 30% as compared with traditional ones, producing substantial economic, social and environmental protection benefits.
摘要:
This invention is about a natural gas isobaric liquefaction apparatus, which is based on the Rankine cycle system of similar thermal energy power circulation apparatus at cryogenic side, a cryogenic liquid pump is used to input power and the refrigerating media makes up cold to the natural gas liquefying apparatus, so as to realize the isobaric liquefaction of natural gas. The natural gas liquefying apparatus of this invention can save energy by over 30% as compared with the traditional advanced apparatus with the identical refrigerating capacity, therefore it constitutes a breakthrough to the traditional natural gas liquefaction technology, with substantial economic, social and environmental protection benefits.
摘要:
This invention is about an air separation apparatus to produce oxygen and nitrogen through isobaric separation, which is based on the Rankine cycle system of similar thermal energy power circulation apparatus at cryogenic side, a liquid pump is used to input work and the cold is made up to the air separation apparatus with refrigerating media, so as to realize the isobaric separation of air to produce nitrogen and oxygen. The air separation apparatus of this invention can save energy by over 30% as compared with the traditional advanced apparatus with the identical refrigerating capacity, and it can also realize centralize gas supply via the air separation apparatus, therefore it constitutes a breakthrough to the traditional air separation technology and refrigeration theory, with substantial economic, social and environmental protection benefits.