Abstract:
A common rail fuel system diagnostic algorithm is executed by an engine control and real time to detect and identify a faulty fuel system component. Rail pressure data is processed through a digital resonating filter having a resonance frequency corresponding to a fault signature. A peak magnitude and phase of the output from the digital resonating filter reveals a degradation level of a fuel injector, and a phase of the output identifies which fuel injector is faulted.
Abstract:
A common rail fuel system includes a common rail supplied by an inlet metered high pressure pump and fluidly connected to a plurality of zero-leak fuel injectors. An electronic controller controls pressure in the common rail predominantly responsive to a rail pressure error when outside of an overshoot avoidance condition corresponding to the error being less than a first threshold and a time rate of change of the error being greater than a second threshold. Pressure in the common rail is controlled predominantly responsive to the time rate of change of the error during the overshoot avoidance condition.
Abstract:
A common rail fuel system diagnostic algorithm is executed by an engine control and real time to detect and identify a faulty fuel system component. Rail pressure data is processed through a digital resonating filter having a resonance frequency corresponding to a fault signature. A peak magnitude and phase of the output from the digital resonating filter reveals a degradation level of a fuel injector, and a phase of the output identifies which fuel injector is faulted.
Abstract:
A common rail fuel system includes a common rail supplied by an inlet metered high pressure pump and fluidly connected to a plurality of zero-leak fuel injectors. An electronic controller controls pressure in the common rail predominantly responsive to a rail pressure error when outside of an overshoot avoidance condition corresponding to the error being less than a first threshold and a time rate of change of the error being greater than a second threshold. Pressure in the common rail is controlled predominantly responsive to the time rate of change of the error during the overshoot avoidance condition.