Abstract:
A sample-and-hold (S/H) circuit is provided. The S/H circuit generally comprises a sampling switch, a sampling capacitor, and a correction network. The sampling switch that receives an analog input signal is actuated and deactuated by a timing signal. The sampling capacitor is coupled to the sampling switch at a sampling node so as to receive the analog input signal when the sampling switch is actuated and to store a voltage of the analog input signal when the sampling switch is deactuated. The correction network has at least one row of varactor cells such that each varactor cell is coupled to the sampling node and wherein each varactor cell in the row receives a reference voltage. Additionally, each varactor cell receives at least one of a plurality of control signals.
Abstract:
An aspect of the present invention avoids an amplifier of an analog to digital converter (ADC) from entering a saturation region. In an embodiment, a sample of an input signal to an ADC is compared with the upper and lower full-scale levels of the ADC. If input overload is detected, inputs to amplifiers in an input stage of the ADC are forced to zero for the duration of the input overload, and are thus prevented from going into saturation. Input overload conditions are signaled directly to an output digital block of the ADC, which provides output digital codes equivalent to either the upper or the lower full scale level depending on whether the input overload is signaled as exceeding the upper level or the lower level. Input overload recovery time of the ADC may thus be minimized.
Abstract:
A sample-and-hold (S/H) circuit is provided. The S/H circuit generally comprises a sampling switch, a sampling capacitor, and a correction network. The sampling switch that receives an analog input signal is actuated and deactuated by a timing signal. The sampling capacitor is coupled to the sampling switch at a sampling node so as to receive the analog input signal when the sampling switch is actuated and to store a voltage of the analog input signal when the sampling switch is deactuated. The correction network has at least one row of varactor cells such that each varactor cell is coupled to the sampling node and wherein each varactor cell in the row receives a reference voltage. Additionally, each varactor cell receives at least one of a plurality of control signals.
Abstract:
With high speed analog to digital converters (ADCs), components within the ADC can enter a saturation region when an input exceeded the input range of the ADC, which can cause errors. Here, a sample of an input signal to an ADC is compared with the upper and lower full-scale levels of the ADC. If input overload is detected, inputs to amplifiers in an input stage of the ADC are forced to zero for the duration of the input overload, and are thus prevented from going into saturation. Input overload conditions are signaled directly to an output digital block of the ADC, which provides output digital codes equivalent to either the upper or the lower full scale level depending on whether the input overload is signaled as exceeding the upper level or the lower level. Input overload recovery time of the ADC may thus be minimized.