Abstract:
A method for deriving at least one operating parameter of a fluid-insulated electrical apparatus, in particular of gas-insulated switchgear. The operating parameter is dependent on a dielectric breakdown strength of an insulation fluid of the electrical apparatus. The insulation fluid includes at least three components that are assigned to at least a first and a second component group such that at least one component group comprises at least two components. The component groups differ in their weighted average values of the molecular masses of the components in the respective component groups. At least one quantity which is indicative of the concentration of the first component group and of the concentration of the second component group is determined from the insulation fluid, e.g. by measuring one or more measurement variables with one or more sensors. The operating parameter is then derived using the at least one quantity.
Abstract:
A method for deriving at least one operating parameter of a fluid-insulated electrical apparatus, in particular of gas-insulated switchgear. The operating parameter is dependent on a dielectric breakdown strength of an insulation fluid of the electrical apparatus. The insulation fluid includes at least three components that are assigned to at least a first and a second component group such that at least one component group comprises at least two components. The component groups differ in their weighted average values of the molecular masses of the components in the respective component groups. At least one quantity which is indicative of the concentration of the first component group and of the concentration of the second component group is determined from the insulation fluid, e.g. by measuring one or more measurement variables with one or more sensors. The operating parameter is then derived using the at least one quantity.
Abstract:
An apparatus for the generation, the distribution or the usage of electrical energy, the apparatus including a housing enclosing an insulating space and an electrical component arranged in the insulating space. The insulating space contains a dielectric insulation gas including an organofluorine compound A. The apparatus further includes a molecular sieve arranged such as to come into contact with the insulation gas. The molecular sieve has an average pore size y greater than the molecular size of at least one decomposition product of the organofluorine compound A generated during operation of the apparatus. The adsorption capability of the molecular sieve for organofluorine compound A is lower than for the at least one decomposition product. The apparatus further includes at least one desiccant arranged such as to come into contact with the insulation gas.
Abstract:
An apparatus for the generation, the distribution or the usage of electrical energy, the apparatus including a housing enclosing an insulating space and an electrical component arranged in the insulating space. The insulating space contains a dielectric insulation gas including an organofluorine compound A. The apparatus further includes a molecular sieve arranged such as to come into contact with the insulation gas. The molecular sieve has an average pore size y greater than the molecular size of at least one decomposition product of the organofluorine compound A generated during operation of the apparatus. The adsorption capability of the molecular sieve for organofluorine compound A is lower than for the at least one decomposition product. The apparatus further includes at least one desiccant arranged such as to come into contact with the insulation gas.