摘要:
The present invention is a grain-oriented electrical steel sheet characterized in that Bi is present at 0.01 to less than 1,000 ppm in terms of mass at the interface of the substrate steel and the primary film of the grain-oriented electrical steel sheet. The grain-oriented electrical steel sheet is produced by any of the processes of: before decarburization annealing, applying preliminary annealing for 1 to 20 sec. at 700° C. or higher and controlling an atmosphere in the temperature range; controlling the maximum attaining temperature B (° C.) before final cold rolling so that the maximum attaining temperature B may satisfy the expression, −10×ln(A)+1,100≦B≦10×ln(A)+1,220, in accordance with a Bi content A (ppm) and at the same time heating the steel sheet cold rolled to the final thickness to 700° C. or higher within 10 sec. or at a heating rate of 100° C./sec. or more before decarburization annealing, or immediately thereafter applying preliminary annealing for 1 to 20 sec. at 700° C. or higher; or controlling a TiO2 amount B added in relation to MgO of 100 as parts by weight and an MgO coating amount C (g/m2) so that the expression, A0.8≦B×C≦400, may be satisfied in accordance with the Bi content A (ppm).
摘要翻译:本发明是一种方向性电磁钢板,其特征在于,所述Bi在基板钢与晶粒取向电工钢板的一次膜的界面处的质量比为0.01〜小于1,000ppm。 晶粒取向电工钢板通过以下任一方法制造:在脱碳退火之前,进行1〜20秒的预退火。 在700℃以上,控制温度范围内的气氛; 控制最终冷轧前的最大达到温度B(℃),使得最大达到温度B可以满足以下表达式:-10×ln(A)+1,100 <= B <= 10×ln(A)+1,220,根据 Bi含量A(ppm),同时在10秒内将钢板冷轧至最终厚度至700℃以上。 或加热速率为100℃/秒。 或更多的脱碳退火之前,或者之后立即进行1〜20秒的预退火。 在700℃以上; 或控制相对于MgO为100重量份的TiO 2 B量和MgO涂布量C(g / m 2 O 2),使得表达式A 根据Bi含量A(ppm)可以满足0.8≤BxC≤400。
摘要:
The present invention is a grain-oriented electrical steel sheet characterized in that Bi is present at 0.01 to less than 1,000 ppm in terms of mass at the interface of the substrate steel and the primary film of the grain-oriented electrical steel sheet. The grain-oriented electrical steel sheet is produced by any of the processes of: before decarburization annealing, applying preliminary annealing for 1 to 20 sec. at 700° C. or higher and controlling an atmosphere in the temperature range; controlling the maximum attaining temperature B (° C.) before final cold rolling so that the maximum attaining temperature B may satisfy the expression, −10×ln(A)+1,100≦B≦10×ln(A)+1,220, in accordance with a Bi content A (ppm) and at the same time heating the steel sheet cold rolled to the final thickness to 700° C. or higher within 10 sec. or at a heating rate of 100° C./sec. or more before decarburization annealing, or immediately thereafter applying preliminary annealing for 1 to 20 sec. at 700° C. or higher; or controlling a TiO2 amount B added in relation to MgO of 100 as parts by weight and an MgO coating amount C (g/m2) so that the expression, A0.8≦B×C≦400, may be satisfied in accordance with the Bi content A (ppm).
摘要:
A grain-oriented electrical steel sheet excellent in film and iron loss characteristics. The steel sheet contains up to 0.005% of C, 2.0 to 7.0& Si in terms of weight % and the balance iron and unavoidable impurities. An oxide film which mainly contains forsterite is formed on the surface and an insulating coating is formed on the oxide film. The peak intensity of Si obtained by glow discharge spectral analysis (GDS analysis) from the oxide film surface is at least ½ of that of Al, and the depth of the peak position of Si from the oxide film surface us up to {fraction (1/10)} of the depth of that of Al. The sheet satisfies the formulas for a ratio y(%) with which peeling of the oxide film does not take place when subjected to a bending test with a curvature of 20 mm and for core loss characteristic W (W/kg): y(%)≧−122.45t+112.55 W (W/kg)≦2.37t+0.280 wherein t represents a sheet thickness in terms of mm.
摘要:
The present invention is a grain-oriented electrical steel sheet characterized in that Bi is present at 0.01 to less than 1,000 ppm in terms of mass at the interface of the substrate steel and the primary film of the grain-oriented electrical steel sheet. The grain-oriented electrical steel sheet is produced by any of the processes of: before decarburization annealing, applying preliminary annealing for 1 to 20 sec. at 700° C. or higher and controlling an atmosphere in the temperature range; controlling the maximum attaining temperature B (° C.) before final cold rolling so that the maximum attaining temperature B may satisfy the expression, −10×ln(A)+1,100≦B≦10×ln(A)+1,220, in accordance with a Bi content A (ppm) and at the same time heating the steel sheet cold rolled to the final thickness to 700° C. or higher within 10 sec. or at a heating rate of 100° C./sec. or more before decarburization annealing, or immediately thereafter applying preliminary annealing for 1 to 20 sec. at 700° C. or higher; or controlling a TiO2 amount B added in relation to MgO of 100 as parts by weight and an MgO coating amount C (g/m2) so that the expression, A0.8≦B×C≦400, may be satisfied in accordance with the Bi content A (ppm).
摘要:
A process for producing a grain-oriented electrical steel sheet wherein during the decarburization annealing step, the steel sheet is first rapidly heated in a rapid heating chamber and the PH2O/PH2 ratio in the rapid heating chamber is more than the PH2O/PH2 ratio in the decarburization annealing furnace so as to provide improved oxide film adhesion.
摘要翻译:一种方向性电磁钢板的制造方法,其中在脱碳退火工序中,钢板首先在快速加热室中快速加热,并且快速加热室中的PH 2 O / PH 2比大于PH 2 O / PH 2比 脱碳退火炉,以提供改善的氧化膜附着力。
摘要:
The present invention provides a grain-oriented electrical steel sheet having magnetic properties equal to, or higher than, those of conventional steel sheets can be produced economically with high productivity, and a method for producing such a steel sheet. The producing method comprises the steps of using, as a starting material, a coil obtained by heating a slab having a composition comprising, in terms of percent by weight, 0.02 to 0.15% of C, 2.5 to 4.0% of Si, 0.02 to 0.20% of Mn, 0.015 to 0.065% of Sol. Al, 0.0030 to 0.0150% of N, 0.005 to 0.040% as the sum of at least one of S and Se and the balance substantially consisting of Fe and hot rolling the slab to a coil, or a coil directly cast from a molten steel having the same components as the slab, conducting hot rolled sheet annealing at 900 to 1,100.degree. C., one stage cold rolling the sheet by a tandem mill having a plurality of stands, conducting decarburization annealing, further conducting final finish annealing, and then applying final coating so that a product having a thickness of 0.20 to 0.55 mm, an average grain diameter size of 1.5 to 5.5 mm, a W.sub.17/50 value expressed by the formula given below and a B.sub.8 value satisfying the relation 1.80.ltoreq.B.sub.8 (T).ltoreq.1.88:0.5884e.sup.1.9154t .ltoreq.W17/50 (W/kg).ltoreq.0.7558e.sup.1.7378t [t: sheet thickness.]