摘要:
The method comprises explosively bonding a NiTi alloy to a steel workpiece formed in the shape of at least a portion of a desired hydraulic device. The nickel content of the NiTi alloy is sufficient to place the alloy substantially completely in the .beta. phase at or about room temperature. This nickel content is typically between about 55 weight percent to about 56 weight percent. The NiTi alloy is provided in the form of a strip having a thickness of from about 0.01 inch (0.25 mm) to about 1.0 inch (25 mm). After annealing, the NiTi alloy again is heated, to increase the ductility of the NiTi alloy. The NiTi alloy typically is maintained at this temperature and explosively bonded to the workpiece to cover at least a portion of the surface area with the NiTi alloy. The present invention also includes NiTi-metal composites made according to the process of the present invention. These NiTi-metal composites are superior for resisting cavitation erosion and LDE when compared to conventional materials.
摘要:
Two phase, TiAl.sub.2 -based, ternary aluminides of iron, nickel and other transitional metals are disclosed. A transformation from the tetragonal crystal configurations of the TI--Al system to the face-centered cubic configurations of the TI--Al--Fe and TI--Al--Ni systems is attributed to the transitional elements substituting for titanium in the face-centered cubic crystal lattice of the titanium aluminides. The resulting alloys of the composition Ti.sub.30 M.sub.4 Al.sub.66 or Ti.sub.25 M.sub.9 Al.sub.66, including Ti.sub.30 Fe.sub.4 Al.sub.66 and Ti.sub.30 Ni.sub.4 Al.sub.66, are low density, high temperature, aluminum-rich alloys possessing desirable properties, including ductility.