-
公开(公告)号:US20060271300A1
公开(公告)日:2006-11-30
申请号:US10565417
申请日:2004-07-29
申请人: William Welsh , Ming Ouyang , Paul Lioy , Panos Georgopoulos
发明人: William Welsh , Ming Ouyang , Paul Lioy , Panos Georgopoulos
IPC分类号: G06F19/00
CPC分类号: G06K9/6226 , G16B25/00 , G16B40/00
摘要: Clustering is routinely applied in the exploratory analysis of microarray data. Missing entries arise from blemishes on the microarrays. The present invention provides a new method, and computer program and/or computer product thereof to impute missing values. The method involves the steps of clustering microarray data by partitioning the data into a select number of clusters, wherein each data point is iteratively moved from one cluster to another, until two consecutive iterations have resulted in the same partition pattern; obtaining a select number of estimates of the data in the clusters by probabilistic interference; and averaging the select number of estimates to obtain missing values in the microarray data. The method is superior to other imputation models as measured by root mean squared errors.
摘要翻译: 在微阵列数据的探索性分析中常规应用聚类。 缺少的条目是由微阵列上的瑕疵产生的。 本发明提供了一种新的方法,以及计算机程序和/或计算机产品来估算缺失值。 该方法包括通过将数据分割成选定数量的簇来聚类微阵列数据的步骤,其中每个数据点被迭代地从一个簇移动到另一簇,直到两个连续的迭代已经得到相同的分区模式; 通过概率干扰获得集群中的数据的选择数量的估计; 并对所选择的估计数进行平均以获得微阵列数据中的缺失值。 该方法优于通过均方根误差测量的其他插补模型。
-
公开(公告)号:US1689398A
公开(公告)日:1928-10-30
申请号:US19671527
申请日:1927-06-06
申请人: PAUL LIOY F
发明人: PAUL LIOY F
IPC分类号: A43B7/22
-
-