摘要:
In one embodiment, a system includes a processor, logic in the processor and/or memory configured to determine a physical position on a magnetic medium that corresponds to an end of encrypted data written over residual unencrypted data, and logic configured to store an indicator of the physical position on at least one of the magnetic medium and a memory coupled thereto. In another embodiment, a method includes determining a physical position on a magnetic medium that corresponds to an end of encrypted data written over residual unencrypted data, storing an indicator of the physical position on at least one of the magnetic medium and a memory coupled thereto.
摘要:
A system according to one embodiment includes a processor; logic in the processor and/or a memory configured to determine a furthest physical position on a magnetic medium that unobscured data has been written to; and logic configured to store an indicator of the furthest physical position on at least one of the magnetic medium and a memory coupled thereto. A system according to another embodiment includes a processor; logic in the processor and/or a memory configured to receive an instruction to obscure data on a magnetic medium; logic configured to read an indicator of a furthest physical position on the magnetic medium that unobscured data has been written to; and logic configured to cause obscuring of the unobscured data on the magnetic medium, and terminating the obscuring upon reaching the physical position in the indicator.
摘要:
A system according to one embodiment includes a processor; logic in the processor and/or a memory configured to determine a furthest physical position on a magnetic medium that unobscured data has been written to; and logic configured to store an indicator of the furthest physical position on at least one of the magnetic medium and a memory coupled thereto. A system according to another embodiment includes a processor; logic in the processor and/or a memory configured to receive an instruction to obscure data on a magnetic medium; logic configured to read an indicator of a furthest physical position on the magnetic medium that unobscured data has been written to; and logic configured to cause obscuring of the unobscured data on the magnetic medium, and terminating the obscuring upon reaching the physical position in the indicator.
摘要:
A tape system is provided with an encryption capable tape drive and an encryption enabled tape drive device driver for the encryption capable tape drive. The encryption enabled tape drive device driver functions as a proxy which connects the encryption capable tape drive to a key manager which serves keys to the tape drive. When the encryption capable device driver causes a command to be sent to the drive, the tape drive is configured to respond with a message that is intended for a key manager such as an External Key Manager (EKM). The encryption capable device driver recognizes that this is a message intended for the EKM and forwards that message to the EKM (e.g., via an Internet Protocol (IP) connection). The EKM then responds to the key request by issuing a new key (for a new cartridge which is to be written from beginning of tape (BOT)) or an existing key (for a cartridge which needs to be read). The device driver connects all EKM responses to the encryption capable tape drive and the EKM from which the encryption capable tape drive obtains its keys.
摘要:
A tape system is provided with an encryption capable tape drive and an encryption enabled tape drive device driver for the encryption capable tape drive. The encryption enabled tape drive device driver functions as a proxy which connects the encryption capable tape drive to a key manager which serves keys to the tape drive. When the encryption capable device driver causes a command to be sent to the drive, the tape drive is configured to respond with a message that is intended for a key manager such as an External Key Manager (EKM). The encryption capable device driver recognizes that this is a message intended for the EKM and forwards that message to the EKM (e.g., via an Internet Protocol (IP) connection). The EKM then responds to the key request by issuing a new key (for a new cartridge which is to be written from beginning of tape (BOT)) or an existing key (for a cartridge which needs to be read). The device driver connects all EKM responses to the encryption capable tape drive and the EKM from which the encryption capable tape drive obtains its keys.
摘要:
A method, system and program are provided for enabling access to encrypted data in a storage cartridge by wrapping the data key used to encrypt the data with one or more encryption keys (e.g., a public key from a public/private key pair) to form one or more encryption encapsulated data keys (EEDKs) and then storing the EEDK(s) on the storage cartridge along with the encrypted data in one or more location that are distinct from the encrypted data. The encrypted data may be decoded by retrieving the EEDK from the storage cartridge, decrypting the EEDK with a decryption key (e.g., the private key from the public/private key pair) to extract the underlying data key, and then using the extracted data key to decrypt the encrypted data. By storing the EEDKs separately from the encrypted data, the EEDKs may be updated independently of the corresponding encrypted data.
摘要:
A bowtie monopole antenna is fabricated of a sheet metal radiating body 102 that is triangular shaped, and having a longitudinal dimension and axis (106) and a width (108). One corner of the radiating body is tapered to form a feed point (104). The length dimension determines the antenna's lowest resonance frequency while the taper created by the width determines the highest point of resonance. For using the bowtie monopole antenna in a communication device, the radiating body (102) is folded or wrapped around towards itself To facilitate the folding or wrapping a mounting substrate (202) is used. The substrate may be provided with retaining features (206) to capture the antenna assembly within the communication device.
摘要:
A shield (100) includes a raw sheet metal part (102) that is formed to include a tab 108 along with its biasing feature (110) at one end and a locating slot (114) at the other. This sheet metal part (102) is bent to form, whereby the tab (108) is engaged into the locating slot (114). The engagement of the tab (108) into the locating slot (114) is accompanied by the biasing feature (110) forcing the shield (100) to maintain a coplanar surface. The coplanarity of the shield (100) provides for an optimum soldering of the shield (100) to a circuit carrying substrate (300).
摘要:
A method, system and computer-usable medium are disclosed for reordering User Data Segment (UDS) lists to reduce seek times when accessing data stored on tape media. A host application sends a list of UDSs to a target tape drive and requests the tape drive to reorder the list to provide better performance. An ordered list of target User data Segments to retrieve from a target tape media is received. Information related to the location of each UDS on the target media is processed to determine its corresponding physical position on the tape media. The resulting physical positions are then processed to generate a reordered UDS list, where the order of the User Data Segments is reordered according to their physical location on the target tape media. The reordered list of User Data Segments is then used to perform seek, reposition and read operations to read User Data Segments from the tape media.