摘要:
In a boiling water reactor fuel bundle, a three dimensional debris catching grid construction is placed within the flow volume defined by the lower tie plate assembly between the inlet nozzle and upper fuel rod supporting grid. A perforated plate is utilized having round holes as small consistent with the prevention of inadvertent closure due crudding and a hole pitch consistent with mechanical integrity requirements. The perforated plate is placed in a three dimensional construction such as a dome, cylinder, pyramid, inverted pyramid or corrugated construction spanning the flow volume of the lower tie plate assembly. As a consequence of this three dimensional grid construction, the total flow through area of the perforations in the metal plate does not introduce appreciable pressure drop in the lower tie plate assembly between the inlet nozzle and the rod supporting grid. Fluid movement at the debris restraining holes of the grid construction has a low flow velocity and a change in flow direction before passing through the holes to discourage debris from finding its way through the grid holes. Finally, it is possible to incorporate debris traps within the flow volume of the lower tie plate assembly that can cause trapping and subsequent removal of trapped debris upon fuel bundle replacement.
摘要:
In a boiling water reactor fuel bundle, a three dimensional debris catching grid construction is placed within the flow volume defined by the lower tie plate assembly between the inlet nozzle and upper fuel rod supporting grid. A perforated plate is utilized having round holes as small consistent with the prevention of inadvertent closure due crudding and a hole pitch consistent with mechanical integrity requirements. The perforated plate is placed in a three dimensional construction such as a dome, cylinder, pyramid, inverted pyramid or corrugated construction spanning the flow volume of the lower tie plate assembly. As a consequence of this three dimensional grid construction, the total flow through area of the perforations in the metal plate does not introduce appreciable pressure drop in the lower tie plate assembly between the inlet nozzle and the rod supporting grid. Fluid movement at the debris restraining holes of the grid construction has a low flow velocity and a change in flow direction before passing through the holes to discourage debris from finding its way through the grid holes. Finally, it is possible to incorporate debris traps within the flow volume of the lower tie plate assembly that can cause trapping and subsequent removal of trapped debris upon fuel bundle replacement. A double corrugated plate having large holes in the lower plate and smaller holes in the upper plate is utilized to trap debris.