摘要:
The invention relates to a new strain of Pseudomonas putida (designated as HI-70) and to the isolation, cloning, and sequencing of a cyclododecanone monooxygenase-encoding gene (named cdnB) from said strain. The invention also relates to a new cyclododecanone monooxygenase and to a method of use of the cyclododecanone monooxygenase-encoding gene.
摘要:
Cyclopentanone 1,2-monooxygenase (CPMO) from Comamonas (previously Pseudomonas) sp. strain NCIMB 9872 carries out the second step of a degradation pathway that allows the bacterium to use cyclopentanol as a sole carbon source for growth. In the present invention there is reported the localization of the CPMO-encoding gene (cpnB) on a 4.3-kb SphI fragment, the determination of its sequence. The 550-amino acid CPMO polypeptide (Mr, 62,111) encoded by the gene was found to have 36.5% identity with the sequence of cyclohexanone 1,2-monooxygenase (CHMO) of Acinetobacter sp. strain NCIMB 9871. The 62-kDa CPMO was expressed in E. coli as an IPTG-inducible protein.
摘要:
Cyclopentanone 1,2-monooxygenase (CPMO) from Comamonas (previously Pseudomonas) sp. strain NCIMB 9872 carries out the second step of a degradation pathway that allows the bacterium to use cyclopentanol as a sole carbon source for growth. In the present invention there is reported the localization of the CPMO-encoding gene (cpnB) on a 4.3-kb SphI fragment, the determination of its sequence. The 550-amino acid CPMO polypeptide (Mt, 62,111) encoded by the gene was found to have 36.5% identity with the sequence of cyclohexanone 1,2-monooxygenase (CHMO) of Acinetobacter sp. strain NCIMB 9871. The 62-kDa CPMO was expressed in E. coli as an IPTG-inducible protein.
摘要:
A method and apparatus for packaging cans or similar objects having beaded rims in combination with planar carriers of polymeric materials is described. The cans are arrayed into groups corresponding to rim-engagingopenings or formations on the carriers by a conveyor and the cans are then positioned, aligned and firmly held with respect to the formations by cores inserted into the interstices within the array. The cores are actuated by the position of the conveyor belt via rails at specific stations. While the cores are holding the cans in alignment with respect to the carrier, the cans are inserted into the carriers by conveyor-actuated rams so that the beads on said rims engage the formations on the carriers. The carriers may include the rim-engaging formations along opposite faces.
摘要:
Methods and apparatus are described for forward baseband digitalization. A method includes receiving a forward baseband digital optical signal from an optical fiber; transforming the forward baseband digital optical signal to a forward analog electrical signal; transmitting the forward analog electrical signal on an electrical conductor; receiving a reverse analog electrical signal on the electrical conductor; transforming the reverse analog electrical signal to a reverse digital baseband optical signal; and transmitting the reverse digital baseband optical signal. An apparatus includes a forward baseband digital optical signal receiver; a forward circuit coupled to the forward baseband digital optical signal receiver, the forward circuit transforming a forward baseband digital optical signal to a forward analog electrical signal; a forward analog electrical signal transmitter coupled to the forward circuit; a reverse analog electrical signal receiver; a reverse circuit coupled to the reverse analog electrical signal receiver, the reverse circuit transforming a reverse analog electrical signal to a reverse digital baseband optical signal; and a reverse baseband digital transmitter coupled to the reverse circuit.
摘要:
Methods and apparatus are described for forward baseband digitalization. A method includes receiving a forward baseband digital optical signal from an optical fiber; transforming the forward baseband digital optical signal to a forward analog electrical signal; transmitting the forward analog electrical signal on an electrical conductor; receiving a reverse analog electrical signal on the electrical conductor; transforming the reverse analog electrical signal to a reverse digital baseband optical signal; and transmitting the reverse digital baseband optical signal. An apparatus includes a forward baseband digital optical signal receiver; a forward circuit coupled to the forward baseband digital optical signal receiver, the forward circuit transforming a forward baseband digital optical signal to a forward analog electrical signal; a forward analog electrical signal transmitter coupled to the forward circuit; a reverse analog electrical signal receiver; a reverse circuit coupled to the reverse analog electrical signal receiver, the reverse circuit transforming a reverse analog electrical signal to a reverse digital baseband optical signal; and a reverse baseband digital transmitter coupled to the reverse circuit.