摘要:
Detection and tracking of an object by exploiting its unique reflectance signature. This is done by examining every image pixel and computing how closely that pixel's spectrum matches a known object spectral signature. The measured radiance spectra of the object can be used to estimate its intrinsic reflectance properties that are invariant to a wide range of illumination effects. This is achieved by incorporating radiative transfer theory to compute the mapping between the observed radiance spectra to the object's reflectance spectra. The consistency of the reflectance spectra allows for object tracking through spatial and temporal gaps in coverage. Tracking an object then uses a prediction process followed by a correction process.
摘要:
Detection and tracking of an object by exploiting its unique reflectance signature. This is done by examining every image pixel and computing how closely that pixel's spectrum matches a known object spectral signature. The measured radiance spectra of the object can be used to estimate its intrinsic reflectance properties that are invariant to a wide range of illumination effects. This is achieved by incorporating radiative transfer theory to compute the mapping between the observed radiance spectra to the object's reflectance spectra. The consistency of the reflectance spectra allows for object tracking through spatial and temporal gaps in coverage. Tracking an object then uses a prediction process followed by a correction process.