摘要:
Systems and methods for placing ads in a block on a webpage are disclosed. Generally, two ranking models are trained using a first and second ads data set. The first model predicts a first click probability for each ad in the first ads data and rank the ads based on the eCPM. The second model is trained using the second ads data set comprising a subset of the first ads data set and interaction features related to ad position in the block. The second model predicts a second click probability for each ad in the second ads data set. An overall expected revenue for each arrangement of ads in the second ads data set is then calculated. The computer system selects the arrangement with maximum computed overall expected revenue and places the ads in the block on the webpage according to the selected arrangement.
摘要:
Systems and methods for placing ads in a block on a webpage are disclosed. Generally, two ranking models are trained using a first and second ads data set. The first model predicts a first click probability for each ad in the first ads data and rank the ads based on the eCPM. The second model is trained using the second ads data set comprising a subset of the first ads data set and interaction features related to ad position in the block. The second model predicts a second click probability for each ad in the second ads data set. An overall expected revenue for each arrangement of ads in the second ads data set is then calculated. The computer system selects the arrangement with maximum computed overall expected revenue and places the ads in the block on the webpage according to the selected arrangement.
摘要:
Systems and methods for placing ads in a block on a webpage are disclosed. Generally, two ranking models are trained using a first and second ads data set. The first model predicts a first click probability for each ad in the first ads data and rank the ads based on the eCPM. The second model is trained using the second ads data set comprising a subset of the first ads data set and interaction features related to ad position in the block. The second model predicts a second click probability for each ad in the second ads data set. An overall expected revenue for each arrangement of ads in the second ads data set is then calculated. The computer system selects the arrangement with maximum computed overall expected revenue and places the ads in the block on the webpage according to the selected arrangement.