Abstract:
This invention provides novel liver targeting agents and their synthetic methods. A liver targeting agent, with a lysine based nitrilotriacetic acid structure as backbone which acquires multivalency with saccharide groups, to bind with a galactosamine chain or lactose chain is disclosed. In particular, only one amino acid L-lysine is involved to provide trivalency. All carboxyl groups in Nε-benzyloxycarbonyl-Nα-dicarboxymethyl-L-lysine can be conjugated with three glycosides of ahGalNAc or ahLac in one step. This invention also provides a hexa-lactoside. In particular, the TFA-AHA-Asp was used to conjugate 2 molecules of NTA(ahLac)3. This invention also provides a method for adding a spacer between NTA and DTPA. The extended hepatocyte-specific glyco-ligand has higher 111In-radiolabelling yield than those non-extended.
Abstract:
A test indicator for quantifying remaining liver function is provided. A novel liver receptor imaging agent with liver targeting property is utilized to develop a method for quantifying remaining liver function to serve as test indicator for judging the liver failure outcome in clinic, particularly for judging the necessity of liver transplantation for patients with liver failure or liver disease. The radioactivity uptake of the test indicator was negatively correlated with the extent of liver reserve. The cutoff value of liver reserve for liver transplantation is also disclosed.
Abstract:
A radiolabeling method using a multivalent glycoligand as hepatic receptor imaging agent is provided. The multivalent glycoligand-DTPA derivatives (In-111-DTPA-hexa lactoside and In-111-DTPA-tri-galactosamine glycoside) labeled with In-111 are used as hepatic receptor imaging agent. The effects of imaging of a hepatic receptor in different species are evaluated, the lowest specific radioactivity values of hepatic receptor imaging required in different species are discovered. Since the specificity of the human ASGPR closely resembles that of the mouse. This kind of radiolabelling method, agent and related study about specific radioactivity could be used in clinical trial in the future.
Abstract:
This invention provides novel liver targeting agents and their synthetic methods. A liver targeting agent, with a lysine based nitrilo triacetic acid structure as backbone which acquires multivalency with saccharide groups, to bind with a galactosamine chain or lactose chain is disclosed. In particular, only one amino acid L-lysine is involved to provide trivalency. All carboxyl groups in Nε-benzyloxycarbonyl-Nα-dicarboxymethyl-L-lysine can be conjugated with three glycosides of ahGalNAc or ahLac in one step. This invention also provides a hexa-lactoside. In particular, the TFA-AHA-Asp was used to conjugate 2 moles of NTA(ahLac)3. This invention also provides a method for adding a spacer between NTA and DTPA. The extended hepatocyte-specific glyco-ligand has higher 111In-radiolabelling yield than those non-extended.
Abstract:
A test indicator for quantifying remaining liver function is provided. A novel liver receptor imaging agent with liver targeting property is utilized to develop a method for quantifying remaining liver function to serve as test indicator for judging the liver failure outcome in clinic, particularly for judging the necessity of liver transplantation for patients with liver failure or liver disease. The radioactivity uptake of the test indicator was negatively correlated with the extent of liver reserve. The cutoff value of liver reserve for liver transplantation is also disclosed.