摘要:
A computer-implemented method enables a proton density distribution to be obtained. In one embodiment, the method comprises acquiring nuclear magnetic resonance data from porous media; inverting the nuclear magnetic resonance data via a global optimization algorithm to determine a proton density distribution within the porous media; and outputting the determined proton density distribution.
摘要:
The present invention enables the use of a global optimization method for performing joint-inversion of multiple petrophysical data sets, using forward models based on first principle of physics, to generate a 3D rock representation of a subsurface rock structure. The resulting 3D rock representation captures the internal structure, and honors the measured petrophysical properties, of the subsurface rock structure. The 3D rock representation can then be used to predict additional properties not considered in the inversion, to further characterize the subsurface rock structure.
摘要:
A system and method for multi-phase segmentation of noisy 3D x-ray tomography images representative of porous material minimizing data smoothing which processes 3D x-ray tomography images to obtain a standardized intensity image, segments the standardized intensity image into at least 3 phases, calculates volumetric fractions and spatial distributions of the segmented phases and compares them with target values, and if the calculated fractions are not close enough to the target values, repeats the necessary segmentation steps until the calculated volumetric fractions are within a given tolerance to the target values. The segmentation steps include computing a median/mean-filtered-gradient image of the standardized intensity image, creating an intensity vs. gradient graph from the median/mean-filtered-gradient image and the standardized intensity image, partitioning the intensity vs. gradient graph into at least 3 regions, using thresholds defining the regions to segment the standardized grey scale image to create a segmented image, and applying a despeckler filter to remove noise in the segmented image.
摘要:
The present invention enables the use of a global optimization method for performing joint-inversion of multiple petrophysical data sets, using forward models based on first principle of physics, to generate a 3D rock representation of a subsurface rock structure. The resulting 3D rock representation captures the internal structure, and honors the measured petrophysical properties, of the subsurface rock structure. The 3D rock representation can then be used to predict additional properties not considered in the inversion, to further characterize the subsurface rock structure.
摘要:
A system and method for multi-phase segmentation of noisy 3D x-ray tomography images representative of porous material minimizing data smoothing which processes 3D x-ray tomography images to obtain a standardized intensity image, segments the standardized intensity image into at least 3 phases, calculates volumetric fractions and spatial distributions of the segmented phases and compares them with target values, and if the calculated fractions are not close enough to the target values, repeats the necessary segmentation steps until the calculated volumetric fractions are within a given tolerance to the target values. The segmentation steps include computing a median/mean-filtered-gradient image of the standardized intensity image, creating an intensity vs. gradient graph from the median/mean-filtered-gradient image and the standardized intensity image, partitioning the intensity vs. gradient graph into at least 3 regions, using thresholds defining the regions to segment the standardized grey scale image to create a segmented image, and applying a despeckler filter to remove noise in the segmented image.